zoukankan      html  css  js  c++  java
  • [hihoCoder] 拓扑排序·一

    The hints of the problem has given detailed information to implement the topological sorting algorithm. In fact, the toposort algorithm of the hint is the BFS version, which uses the indegrees of each node.

    The code is as follows.

     1 #include <iostream>
     2 #include <vector>
     3 #include <queue>
     4 
     5 using namespace std;
     6 
     7 struct DirectedGraphNode {
     8     int label;
     9     vector<int> neighbors;
    10     DirectedGraphNode(int i) : label(i) {}
    11 };
    12 
    13 vector<DirectedGraphNode*> init_graph(int nodes) {
    14     vector<DirectedGraphNode*> graph(nodes);
    15     for (int i = 0; i < nodes; i++)
    16         graph[i] = new DirectedGraphNode(i);
    17     return graph;
    18 }
    19 
    20 vector<int> compute_indegree(vector<DirectedGraphNode*>& graph) {
    21     vector<int> degrees(graph.size(), 0);
    22     for (int i = 0; i < (int)graph.size(); i++)
    23         for (int j = 0; j < (int)graph[i] -> neighbors.size(); j++)
    24             degrees[graph[i] -> neighbors[j]]++;
    25     return degrees;
    26 }
    27 
    28 bool noCycle(vector<DirectedGraphNode*>& graph) {
    29     vector<int> degrees = compute_indegree(graph);
    30     int nodes = graph.size();
    31     queue<int> zeros;
    32     for (int i = 0; i < (int)degrees.size(); i++)
    33         if (!degrees[i]) zeros.push(i);
    34     while (!zeros.empty()) {
    35         int zero = zeros.front();
    36         zeros.pop();
    37         for (int i = 0; i < (int)graph[zero] -> neighbors.size(); i++)
    38             if (--degrees[graph[zero] -> neighbors[i]] == 0)
    39                 zeros.push(graph[zero] -> neighbors[i]);
    40         nodes--;
    41     }
    42     return nodes == 0;
    43 }
    44 
    45 int main(void) {
    46     int cases;
    47     scanf("%d", &cases);
    48     for (int i = 0; i < cases; i++) {
    49         int nodes, edges;
    50         scanf("%d %d", &nodes, &edges);
    51         vector<DirectedGraphNode*> graph = init_graph(nodes);
    52         int node, neigh;
    53         for (int j = 0; j < edges; j++) {
    54             scanf("%d %d", &node, &neigh);
    55             graph[node - 1] -> neighbors.push_back(neigh - 1);
    56         }
    57         if (noCycle(graph)) printf("Correct
    ");
    58         else printf("Wrong
    ");
    59     }
    60     return 0;
    61 }
  • 相关阅读:
    OpenCV——IplImage
    OpenCV——常用函数查询
    OpenCV——Sobel和拉普拉斯变换
    OpenCV——CvSeq动态结构序列
    OpenCV——人脸检测
    Java—Integer类
    Java—NumberFormat与DecimalFormat类
    sql事务机制
    存储过程
    java中的抽象类和接口
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4606384.html
Copyright © 2011-2022 走看看