zoukankan      html  css  js  c++  java
  • [LeetCode] Dungeon Game

    An interesting problem. The code is also short and clear.

    The basic idea is to use a 2d array dp[i][j] to denote the minimum hp that is required before entering dungeon[i][j]. Since the knight needs to be alive after entering the bottom-right cell of the dungeon, we will update dp from bottom-right to top-left. The updating formula is also simple:

    dp[i][j] = max(1, min(dp[i][j + 1], dp[i + 1][j]) - dungeon[i][j]).

    Taking the maximum with 1 guarantees that the hp of the knight never drops to or below 0. Since the knight only moves in two directions: rightwards or downwards, each cell (dp[i][j]) is only related to its right (d[i][j + 1]) and down (dp[i + 1][j]) neighbors.

    The following code barely translates the above idea, while adding dummy rows and columns for initializations.

     1 class Solution {
     2 public:
     3     int calculateMinimumHP(vector<vector<int>>& dungeon) {
     4         int m = dungeon.size(), n = dungeon[0].size();
     5         vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));
     6         dp[m][n - 1] = dp[m - 1][n] = 1; // initialization
     7         for (int i = m - 1; i >= 0; i--)
     8             for (int j = n - 1; j >= 0; j--)
     9                 dp[i][j] = max(min(dp[i][j + 1], dp[i + 1][j]) -dungeon[i][j], 1);
    10         return dp[0][0];
    11     }
    12 };

    Of course, the 2d array can be simplified to a 1d array if we've been clear of how dp is updated (in the above code, dp is updated row by row from the bottom one to the top one and in each row it is updated from right to left). The 1d version is as follows.

     1 class Solution {
     2 public:
     3     int calculateMinimumHP(vector<vector<int>>& dungeon) {
     4         int m = dungeon.size(), n = dungeon[0].size();
     5         vector<int> dp(n + 1, INT_MAX); dp[n - 1] = 1; // initialization
     6         for (int i = m - 1; i >= 0; i--)
     7             for (int j = n - 1; j >= 0; j--)
     8                 dp[j] = max(min(dp[j], dp[j + 1]) - dungeon[i][j], 1);
     9         return dp[0];
    10     }
    11 };

    Well, if you get confused, try to run the 2d code on the example in the problem statement and record the values of dp near the corresponding values of dungeon using different colors, as the following picture. After that, you will be clear, even of the 1d code :-)

  • 相关阅读:
    如何利用InstallShield for Delphi7打包Oracle9i客户端制作C/S数据库应用程序?
    delphi 保存 和 打开 TREE VIEW的节点已经展开的状态
    在Delphi中的TreeView中保存多个数据
    FastReport经验
    农码一生博文索引
    再讲IQueryable<T>,揭开表达式树的神秘面纱
    你知道C#中的Lambda表达式的演化过程吗?
    先说IEnumerable,我们每天用的foreach你真的懂它吗?
    Linq表达式、Lambda表达式你更喜欢哪个?
    你必须知道的EF知识和经验
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4764126.html
Copyright © 2011-2022 走看看