zoukankan      html  css  js  c++  java
  • [LeetCode] Dungeon Game

    An interesting problem. The code is also short and clear.

    The basic idea is to use a 2d array dp[i][j] to denote the minimum hp that is required before entering dungeon[i][j]. Since the knight needs to be alive after entering the bottom-right cell of the dungeon, we will update dp from bottom-right to top-left. The updating formula is also simple:

    dp[i][j] = max(1, min(dp[i][j + 1], dp[i + 1][j]) - dungeon[i][j]).

    Taking the maximum with 1 guarantees that the hp of the knight never drops to or below 0. Since the knight only moves in two directions: rightwards or downwards, each cell (dp[i][j]) is only related to its right (d[i][j + 1]) and down (dp[i + 1][j]) neighbors.

    The following code barely translates the above idea, while adding dummy rows and columns for initializations.

     1 class Solution {
     2 public:
     3     int calculateMinimumHP(vector<vector<int>>& dungeon) {
     4         int m = dungeon.size(), n = dungeon[0].size();
     5         vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));
     6         dp[m][n - 1] = dp[m - 1][n] = 1; // initialization
     7         for (int i = m - 1; i >= 0; i--)
     8             for (int j = n - 1; j >= 0; j--)
     9                 dp[i][j] = max(min(dp[i][j + 1], dp[i + 1][j]) -dungeon[i][j], 1);
    10         return dp[0][0];
    11     }
    12 };

    Of course, the 2d array can be simplified to a 1d array if we've been clear of how dp is updated (in the above code, dp is updated row by row from the bottom one to the top one and in each row it is updated from right to left). The 1d version is as follows.

     1 class Solution {
     2 public:
     3     int calculateMinimumHP(vector<vector<int>>& dungeon) {
     4         int m = dungeon.size(), n = dungeon[0].size();
     5         vector<int> dp(n + 1, INT_MAX); dp[n - 1] = 1; // initialization
     6         for (int i = m - 1; i >= 0; i--)
     7             for (int j = n - 1; j >= 0; j--)
     8                 dp[j] = max(min(dp[j], dp[j + 1]) - dungeon[i][j], 1);
     9         return dp[0];
    10     }
    11 };

    Well, if you get confused, try to run the 2d code on the example in the problem statement and record the values of dp near the corresponding values of dungeon using different colors, as the following picture. After that, you will be clear, even of the 1d code :-)

  • 相关阅读:
    Linux_进程之间的通信
    Linux_控制作业(管理)
    Linux_进程管理相关命令
    Linux_进程管理的基本概述
    文本编辑_Vim&Vi
    Linux_权限管理理论概述
    Linux_用户和组管理
    Linux_ACL文件访问控制列表
    72. VUE axios 配置信息相关
    71. VUE axios 发送并发请求(多个)
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4764126.html
Copyright © 2011-2022 走看看