zoukankan      html  css  js  c++  java
  • 图书源代码下载: Modern Differential Geometry of CURVES and SURFACES with Mathematica


    http://alpha01.dm.unito.it/personalpages/abbena/gray/




    Contents

      1. Curves in the Plane |
      2. Famous Plane Curves |
      3. Alternative Ways of Plotting Curves |
      4. New Curves from Old |
      5. Determining a Plane Curve from Its Curvature |
      6. Global Properties of Plane Curves |
      7. Curves in Space |
      8. Construction of Space Curves |
      9. Calculus on Euclidean Space |
     10. Surfaces in Euclidean Space |
    11. Nonorientable Surfaces |
    12. Metrics on Surfaces |
    13. Shape and Curvature |
    14. Ruled Surfaces |
    15. Surfaces of Revolution and Constant Curvature |
    16. A Selection of Minimal Surfaces |
    17. Intrinsic Surface Geometry |
    18. Asymptotic Curves and Geodesics on Surfaces |
    19. Principal Curves and Umbilic Points |
    10. Canal Surfaces and Cyclides of Dupin |
    21. The Theory of Surfaces of Constant Negative Curvature |
    22. Minimal Surfaces via Complex Variables |
    23. Rotation and Animation Using Quaternions |
    24. Differentiable Manifolds |
    25. Riemannian Manifolds |
    26.  Abstract Surfaces and Their Geodesics |
    27. The Gauss-Bonnet Theorem
    Description

    This textbook explains the classical theory of curves and surfaces, how to define and compute standard geometric functions, and how to apply techniques from analysis. With over 300 illustrations, 300 miniprograms, and many examples, it highlights important theorems and alleviates the drudgery of computations such as the curvature and torsion of a curve in space.

    The third edition maintains its intuitive approach, reorganizes the material for a clearer division between the text and the Mathematica code, adds a Mathematica notebook (available online) as an appendix to each chapter, and addresses new topics such as quaternions.


    Modern Differential Geometry of
    CURVES and SURFACES

    with Mathematica

    by Alfred Gray, Elsa Abbena, Simon Salamon
    CRC Press, 2006
     

    Notebook files

    N0 N1 N2 N3 N4 N5 N6
    N7 N8 N9 N10 N11 N12 N13
    N14 N15 N16 N17 N18 N19 N20
    N21 N22 N23 N24 N25 N26 N27

    notebooks.rar
    notebooks.tar.gz


      

    Contents

    Curves in the Plane | Famous Plane Curves | Alternative Ways of Plotting Curves | New Curves from Old | Determining a Plane Curve from Its Curvature | Global Properties of Plane Curves | Curves in Space | Construction of Space Curves | Calculus on Euclidean Space | Surfaces in Euclidean Space | Nonorientable Surfaces | Metrics on Surfaces | Shape and Curvature | Ruled Surfaces | Surfaces of Revolution and Constant Curvature | A Selection of Minimal Surfaces | Intrinsic Surface Geometry | Asymptotic Curves and Geodesics on Surfaces | Principal Curves and Umbilic Points | Canal Surfaces and Cyclides of Dupin | The Theory of Surfaces of Constant Negative Curvature | Minimal Surfaces via Complex Variables | Rotation and Animation Using Quaternions | Differentiable Manifolds | Riemannian Manifolds | Abstract Surfaces and Their Geodesics | The Gauss-Bonnet Theorem
    Description

    This textbook explains the classical theory of curves and surfaces, how to define and compute standard geometric functions, and how to apply techniques from analysis. With over 300 illustrations, 300 miniprograms, and many examples, it highlights important theorems and alleviates the drudgery of computations such as the curvature and torsion of a curve in space.

    The third edition maintains its intuitive approach, reorganizes the material for a clearer division between the text and the Mathematica code, adds a Mathematica notebook (available online) as an appendix to each chapter, and addresses new topics such as quaternions.
  • 相关阅读:
    tomcat 自动部署代码
    weex Android
    视频大全
    sql语句
    来一个朴素的验证码小插件
    tcp通信客户端本地日志查看
    python练习题
    由count(sno)和count(cno)引发的思考
    centos7命令行和图形界面的相互切换(附centos7安装配置教程)
    Jenkins配置有用摘抄笔记
  • 原文地址:https://www.cnblogs.com/jhcelue/p/6919655.html
Copyright © 2011-2022 走看看