zoukankan      html  css  js  c++  java
  • 图书源代码下载: Modern Differential Geometry of CURVES and SURFACES with Mathematica


    http://alpha01.dm.unito.it/personalpages/abbena/gray/




    Contents

      1. Curves in the Plane |
      2. Famous Plane Curves |
      3. Alternative Ways of Plotting Curves |
      4. New Curves from Old |
      5. Determining a Plane Curve from Its Curvature |
      6. Global Properties of Plane Curves |
      7. Curves in Space |
      8. Construction of Space Curves |
      9. Calculus on Euclidean Space |
     10. Surfaces in Euclidean Space |
    11. Nonorientable Surfaces |
    12. Metrics on Surfaces |
    13. Shape and Curvature |
    14. Ruled Surfaces |
    15. Surfaces of Revolution and Constant Curvature |
    16. A Selection of Minimal Surfaces |
    17. Intrinsic Surface Geometry |
    18. Asymptotic Curves and Geodesics on Surfaces |
    19. Principal Curves and Umbilic Points |
    10. Canal Surfaces and Cyclides of Dupin |
    21. The Theory of Surfaces of Constant Negative Curvature |
    22. Minimal Surfaces via Complex Variables |
    23. Rotation and Animation Using Quaternions |
    24. Differentiable Manifolds |
    25. Riemannian Manifolds |
    26.  Abstract Surfaces and Their Geodesics |
    27. The Gauss-Bonnet Theorem
    Description

    This textbook explains the classical theory of curves and surfaces, how to define and compute standard geometric functions, and how to apply techniques from analysis. With over 300 illustrations, 300 miniprograms, and many examples, it highlights important theorems and alleviates the drudgery of computations such as the curvature and torsion of a curve in space.

    The third edition maintains its intuitive approach, reorganizes the material for a clearer division between the text and the Mathematica code, adds a Mathematica notebook (available online) as an appendix to each chapter, and addresses new topics such as quaternions.


    Modern Differential Geometry of
    CURVES and SURFACES

    with Mathematica

    by Alfred Gray, Elsa Abbena, Simon Salamon
    CRC Press, 2006
     

    Notebook files

    N0 N1 N2 N3 N4 N5 N6
    N7 N8 N9 N10 N11 N12 N13
    N14 N15 N16 N17 N18 N19 N20
    N21 N22 N23 N24 N25 N26 N27

    notebooks.rar
    notebooks.tar.gz


      

    Contents

    Curves in the Plane | Famous Plane Curves | Alternative Ways of Plotting Curves | New Curves from Old | Determining a Plane Curve from Its Curvature | Global Properties of Plane Curves | Curves in Space | Construction of Space Curves | Calculus on Euclidean Space | Surfaces in Euclidean Space | Nonorientable Surfaces | Metrics on Surfaces | Shape and Curvature | Ruled Surfaces | Surfaces of Revolution and Constant Curvature | A Selection of Minimal Surfaces | Intrinsic Surface Geometry | Asymptotic Curves and Geodesics on Surfaces | Principal Curves and Umbilic Points | Canal Surfaces and Cyclides of Dupin | The Theory of Surfaces of Constant Negative Curvature | Minimal Surfaces via Complex Variables | Rotation and Animation Using Quaternions | Differentiable Manifolds | Riemannian Manifolds | Abstract Surfaces and Their Geodesics | The Gauss-Bonnet Theorem
    Description

    This textbook explains the classical theory of curves and surfaces, how to define and compute standard geometric functions, and how to apply techniques from analysis. With over 300 illustrations, 300 miniprograms, and many examples, it highlights important theorems and alleviates the drudgery of computations such as the curvature and torsion of a curve in space.

    The third edition maintains its intuitive approach, reorganizes the material for a clearer division between the text and the Mathematica code, adds a Mathematica notebook (available online) as an appendix to each chapter, and addresses new topics such as quaternions.
  • 相关阅读:
    2021牛客暑期多校训练营5
    二分图知识点温习
    Codeforces Round #735 (Div. 2)
    牛客比赛订正(3,4)
    Harbour.Space Scholarship Contest 2021-2022 (Div. 1 + Div. 2) Editorial题解
    关于球的相关知识
    AtCoder Beginner Contest 210题解
    P7077 [CSP-S2020] 函数调用
    偏序问题学习笔记
    P1606 [USACO07FEB]Lilypad Pond G
  • 原文地址:https://www.cnblogs.com/jhcelue/p/6919655.html
Copyright © 2011-2022 走看看