

给出一个n,求1-n这n个数,同n的最大公约数的和。比如:n = 6
1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15
Input
1个数N(N <= 10^9)
Output
公约数之和
Input示例
6
Output示例
15
思路:欧拉函数(可能好久没写欧拉,有点忘了);
#include<bits/stdc++.h> using namespace std; #define ll long long #define mod 1000000009 #define inf 999999999 #define esp 0.00000000001 //#pragma comment(linker, "/STACK:102400000,102400000") int scan() { int res = 0 , ch ; while( !( ( ch = getchar() ) >= '0' && ch <= '9' ) ) { if( ch == EOF ) return 1 << 30 ; } res = ch - '0' ; while( ( ch = getchar() ) >= '0' && ch <= '9' ) res = res * 10 + ( ch - '0' ) ; return res ; } int phi(int n) { int i,rea=n; for(i=2;i*i<=n;i++) { if(n%i==0) { rea=rea-rea/i; while(n%i==0) n/=i; } } if(n>1) rea=rea-rea/n; return rea; } int main() { int x,y,z,i,t; while(~scanf("%d",&x)) { ll ans=0; for(i=1;i*i<=x;i++) { if(x%i==0) { if(i*i!=x) ans+=x/i*phi(i); ans+=i*phi(x/i); } } printf("%lld ",ans); } return 0; }