zoukankan      html  css  js  c++  java
  • Codeforces Round #273 (Div. 2) D. Red-Green Towers 背包dp

    D. Red-Green Towers
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    There are r red and g green blocks for construction of the red-green tower. Red-green tower can be built following next rules:

    • Red-green tower is consisting of some number of levels;
    • Let the red-green tower consist of n levels, then the first level of this tower should consist of n blocks, second level — of n - 1 blocks, the third one — of n - 2 blocks, and so on — the last level of such tower should consist of the one block. In other words, each successive level should contain one block less than the previous one;
    • Each level of the red-green tower should contain blocks of the same color.

    Let h be the maximum possible number of levels of red-green tower, that can be built out of r red and g green blocks meeting the rules above. The task is to determine how many different red-green towers having h levels can be built out of the available blocks.

    Two red-green towers are considered different if there exists some level, that consists of red blocks in the one tower and consists of green blocks in the other tower.

    You are to write a program that will find the number of different red-green towers of height h modulo 109 + 7.

    Input

    The only line of input contains two integers r and g, separated by a single space — the number of available red and green blocks respectively (0 ≤ r, g ≤ 2·105, r + g ≥ 1).

    Output

    Output the only integer — the number of different possible red-green towers of height h modulo 109 + 7.

    Examples
    input
    4 6
    output
    2
    input
    9 7
    output
    6
    input
    1 1
    output
    2
    Note

    The image in the problem statement shows all possible red-green towers for the first sample.

     题意:有r个红方块,g个绿方块,第i层有i块,每层的方格颜色相同,层数为最多装的层数,求方案数;

    思路:得到用i块红方块装这个red-green towers的方案,剩余用绿色装,判断是否够,够就加;

            01背包方案数,复杂度(h*min(r,g));

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define pi (4*atan(1.0))
    const int N=1e5+10,M=4e6+10,inf=1e9+10,mod=1e9+7;
    const ll INF=1e18+10;
    int h[1010];
    int hh(int x)
    {
        int pos=upper_bound(h+1,h+1000,x)-h;
        return pos-1;
    }
    int v[1010];
    ll dp[N<<2];
    int main()
    {
        for(int i=1;i<=1000;i++)
        v[i]=i,h[i]=i*(i+1)/2;
        int r,g;
        scanf("%d%d",&r,&g);
        int hig1=hh(r+g);
        memset(dp,0,sizeof(dp));
        dp[0]=1;
        for(int t=1;t<=hig1;t++)
        {
            for(int i=r;i>=t;i--)
            dp[i]+=dp[i-v[t]],dp[i]%=mod;
        }
        ll ans=0;
        for(int i=max(0,h[hig1]-g);i<=r;i++)
        ans+=dp[i],ans%=mod;
        printf("%lld
    ",ans);
        return 0;
    }
  • 相关阅读:
    Java基础之内部类介绍
    Java基础之泛型的使用
    Zookeeper的ZAB协议
    ssm框架整合快速入门
    maven创建web项目
    Shiro快速入门
    工作流Activiti新手入门学习路线整理
    Bootstrap-table实现动态合并相同行(表格同名合并)
    Bootstrap-datetimepicker日期插件简单使用
    java web定时任务---quartz
  • 原文地址:https://www.cnblogs.com/jhz033/p/5854415.html
Copyright © 2011-2022 走看看