zoukankan      html  css  js  c++  java
  • hdu 5154 Harry and Magical Computer 拓扑排序

    Harry and Magical Computer

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)


    Problem Description
    In reward of being yearly outstanding magic student, Harry gets a magical computer. When the computer begins to deal with a process, it will work until the ending of the processes. One day the computer got n processes to deal with. We number the processes from 1 to n. However there are some dependencies between some processes. When there exists a dependencies (a, b), it means process b must be finished before process a. By knowing all the m dependencies, Harry wants to know if the computer can finish all the n processes.
     
    Input
    There are several test cases, you should process to the end of file.
    For each test case, there are two numbers n m on the first line, indicates the number processes and the number of dependencies. 1n100,1m10000
    The next following m lines, each line contains two numbers a b, indicates a dependencies (a, b). 1a,bn
     
    Output
    Output one line for each test case. 
    If the computer can finish all the process print "YES" (Without quotes).
    Else print "NO" (Without quotes).
     
    Sample Input
    3 2 3 1 2 1 3 3 3 2 2 1 1 3
     
    Sample Output
    YES NO
     
    Source
     题意:有向图判环;
    思路:拓扑完没点;
    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define mod 1000000007
    #define esp 0.00000000001
    const int N=2e3+10,M=1e6+10,inf=1e9;
    int n,m;
    vector<int>edge[N];
    int du[N];
    int main()
    {
        while(~scanf("%d%d",&n,&m))
        {
            queue<int>q;
            memset(du,0,sizeof(du));
            for(int i=0;i<=n;i++)
                edge[i].clear();
            int ans=0;
            for(int i=1;i<=m;i++)
            {
                int u,v;
                scanf("%d%d",&u,&v);
                edge[u].push_back(v);
                du[v]++;
            }
            for(int i=1;i<=n;i++)
            {
                if(!du[i])q.push(i);
            }
            while(!q.empty())
            {
                int v=q.front();
                q.pop();
                ans++;
                for(int i=0;i<edge[v].size();i++)
                {
                     du[edge[v][i]]--;
                     if(!du[edge[v][i]])
                        q.push(edge[v][i]);
                }
            }
            if(ans==n)
                printf("YES
    ");
            else
                printf("NO
    ");
        }
        return 0;
    }
  • 相关阅读:
    hdu 1395 2^x(mod n) = 1(C++)(欧拉定理 分解素因数)
    6. 数论准备知识
    hdu 2973 YAPTCHA(C++)(威尔逊定理)
    牛客小白月赛12——B.华华教月月做数学
    牛客小白月赛12——A.华华听月月唱歌
    5. 卡特兰数(Catalan)公式、证明、代码、典例.
    4.质数判定和质数筛法(埃拉托色尼筛选法,线性筛法/欧拉筛法)
    3.牛顿迭代法求解方程的根
    Codeforces刷题
    刷题计划
  • 原文地址:https://www.cnblogs.com/jhz033/p/5982254.html
Copyright © 2011-2022 走看看