zoukankan      html  css  js  c++  java
  • hdu 5673 Robot 卡特兰数+逆元

    Robot

    Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)


    Problem Description
    There is a robot on the origin point of an axis.Every second, the robot can move right one unit length or do nothing.If the robot is 
    on the right of origin point,it can also move left one unit length.A route is a series of movement. How many different routes there are
    that after n seconds the robot is still located on the origin point?
    The answer may be large. Please output the answer modulo 1,000,000,007
     
    Input
    There are multiple test cases. The first line of input contains an integer T(1T100) indicating the number of test cases. For each test case:

    The only line contains one integer n(1n1,000,000).
     
    Output
    For each test case, output one integer.
     
    Sample Input
    3 1 2 4
     
    Sample Output
    1 2 9
     
    Source
    思路:把n步当成最多往右走[n/2]步,最多往左走[n/2]步,当成火车出栈和入栈,卡特兰数,枚举到[n/2];
    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define pi (4*atan(1.0))
    #define eps 1e-14
    const int N=2e5+10,M=4e6+10,inf=1e9+10,mod=1e9+7;
    const ll INF=1e18+10;
    ll a[M];
    ll inv[M];
    void init()
    {
        inv[1] = 1;
        for(int i=2;i<=1000010;i++)
        {
            if(i >= mod)break;
            inv[i] = (mod - mod / i) * inv[mod % i]% mod;
        }
    }
    ll c[M];
    int main()
    {
        a[0]=1;
        init();
        for(ll i=1;i<=1000000;i++)
        {
            a[i]=(((a[i-1]*(4*i-2))%mod)*inv[i+1])%mod;
        }
        int T,cas=1;
        scanf("%d",&T);
        while(T--)
        {
            int n;
            scanf("%d",&n);
            c[0]=1;
            for(int i=1,t=n;i<=n;t--,i++)
            {
                c[i]=(((c[i-1]*t)%mod)*inv[i])%mod;
            }
            ll ans=0;
            for(int i=0;i*2<=n;i++)
            {
                ans=(ans+(a[i]*c[2*i])%mod)%mod;
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    如何提升程序员的工作效率?
    MacOS 上网络故障诊断
    阅读混淆过的Android代码的确不易
    复旦投毒案落下帷幕
    正确把握深度和广度
    Freemarker的数据模型使用
    xilink se14.7 win10闪退
    浅谈 pid的原理与差异
    win10系统激活
    stm8 同时使用dac和adc 采集异常,电平异常
  • 原文地址:https://www.cnblogs.com/jhz033/p/6013541.html
Copyright © 2011-2022 走看看