problem1 link
令$f(x)$表示[0,x]中答案的个数。那么题目的答案为$f(b)-f(a-1)$
对于$f(x)$来说,假设$x$有$d$位数字,即$[0,d-1]$,那么可以进行动态规划,令$dp(i,s)$表示已经考虑了$[i,d-1]$位的数字,状态为$s$的方案数。状态需要五种:
0: 前面都是0
1: 前面不都是0,前高位数字小于$x$且未出现非4,7的数字
2: 前面不都是0,前高位数字等于$x$且未出现非4,7的数字
3: 前面不都是0,前高位数字小于$x$且出现非4,7的数字
4: 前面不都是0,前高位数字等于$x$且出现非4,7的数字
problem2 link
首先,只包含4和7的数字并不多。即便$a=1,b=10^{10}$,这中间的只包含的4,7的数字也只有$2^{1}+2^{2}+...+2^{10}$个。
假设预计算出这些数字存储在数组$A$中
那么从贪心的角度看,Join枚举的区间的开始一定是$A_{i}-bLen+1$,而 Brus枚举的区间一定是从$A_{j}+1$开始。
problem3 link
设$n$的$B$进制表示为$n=sum_{i=0}^{K}a_{i}B^{i},a_{i}<B$
首先,当$K$较大时$B$会很小。因此可以分为三类分别计算:
(1) $K=1$。即$n=a*B+b$。枚举$a,b$,判断$B$是否存在即可。
(2) $K=2$。即$n=a*B^{2}+b*B+c$。枚举$a,b,c$然后判断是否存在$B$。这里可以进行的一个优化是:假设枚举了$a,b$,那么对于连续枚举的两个c,比如$c_{1},c_{2},c_{1}<c_{2}$来说,假如$a*B_{1}^{2}+b*B_{1}+c_{1}=n,a*B_{2}^{2}+b*B_{2}+c_{2}=n$,那么$B_{1}>B_{2}$。所以如果$a*B_{1}^{2}+b*B_{1}+c_{2}<n $,那么对于$(a,b,c_{2})$来说,必然没有对应的$B$的解
(3) $K ge 3$。直接枚举$B$,判断得到的$a_{i}$是否都是lucky-number即可。
(这一道python跑不过,用了Java)
code for problem1
class TheAlmostLuckyNumbersDivOne: def find(self, a, b): return self.calculate(b) - self.calculate(a - 1) def calculate(self, a): print a if a == 0: return 1 d = [] while a != 0: d.append(a % 10) a /= 10 n = len(d) f = self.newArray2D(n, 5, 0) for i in range(d[n - 1] + 1): if i == 0: f[n - 1][0] += 1 elif i == d[n - 1]: if i == 4 or i == 7: f[n - 1][2] += 1 else: f[n - 1][4] += 1 else: if i == 4 or i == 7: f[n - 1][1] += 1 else: f[n - 1][3] += 1 for i in range(n - 2, -1, -1): t = d[i] for j in range(10): if j == 0: f[i][0] += f[i + 1][0] f[i][3] += f[i + 1][1] if j == t: f[i][4] += f[i + 1][2] elif j < t: f[i][3] += f[i + 1][2] elif j == 4 or j == 7: f[i][1] += f[i + 1][0] f[i][1] += f[i + 1][1] if j == t: f[i][2] += f[i + 1][2] f[i][4] += f[i + 1][4] elif j < t: f[i][1] += f[i + 1][2] f[i][3] += f[i + 1][4] f[i][3] += f[i + 1][3] else: f[i][3] += f[i + 1][0] f[i][3] += f[i + 1][1] if j == t: f[i][4] += f[i + 1][2] elif j < t: f[i][3] += f[i + 1][2] return f[0][0] + f[0][1] + f[0][2] + f[0][3] + f[0][4] def newArray2D(self, n, m, init): f = [0] * n for i in range(n): f[i] = [init] * m return f
code for problem2
class TheLuckyGameDivOne: f = [] fLen = 0 a = 0 b = 0 jLen = 0 bLen = 0 cache = [] def generateLuckyNumber(self, x): if x > self.b: return if x >= self.a: self.f.append(x) self.generateLuckyNumber(x * 10 + 4) self.generateLuckyNumber(x * 10 + 7) def binarySearch(self, key): if self.f[0] > key: return 0 if self.f[self.fLen - 1] <= key: return self.fLen low = 0 high = self.fLen - 1 maxIndex = 0 while low <= high: mid = (low + high) >> 1 if self.f[mid] <= key: maxIndex = max(maxIndex, mid) low = mid + 1 else: high = mid - 1 return maxIndex + 1 def calculate(self, start, end): result = self.binarySearch(start + self.bLen - 1) - self.binarySearch(start - 1) for i in range(self.fLen): bStart = self.f[i] + 1 bEnd = bStart + self.bLen - 1 if start <= bStart and bEnd <= end: result = min(result, self.cache[i]) return result def init(self): self.cache = [0] * self.fLen for i in range(self.fLen): bStart = self.f[i] + 1 bEnd = bStart + self.bLen - 1 self.cache[i] = self.binarySearch(bEnd) - self.binarySearch(bStart - 1) def find(self, a, b, jLen, bLen): self.a = a self.b = b self.jLen = jLen self.bLen = bLen self.generateLuckyNumber(0) self.f.sort() if len(self.f) == 0: return 0 self.fLen = len(self.f) self.init() result = 0 for i in range(self.fLen + 1): start = a if i < self.fLen: start = self.f[i] - bLen + 1 end = start + jLen - 1 if a <= start and end <= b: result = max(result, self.calculate(start, end)) return result
code for problem3
import java.util.*; import java.math.*; import static java.lang.Math.*; public class TheLuckyBasesDivOne { List<Long> f = new ArrayList<>(); long n; void generateLuckyNumber(Long x) { if (x > n) { return; } if (x > 0) { f.add(x); } generateLuckyNumber(x * 10 + 4); generateLuckyNumber(x * 10 + 7); } static boolean isLucky(Long x) { if (x == 0) { return false; } while (x > 0) { if (x % 10 != 4 && x % 10 != 7) { return false; } x /= 10; } return true; } long calculate4() { long result = 0; for (long base = 2;;++ base) { int num = 0; boolean tag = true; long x = n; while (x > 0) { tag = tag && isLucky(x % base); num += 1; x /= base; } if (num <= 3) { break; } if (tag) { result += 1; } } return result; } long searchMax(long a, long b, long c) { long low = 0; long high = (long)Math.sqrt(n) + 1; long result = 0; while (low <= high) { long mid = (low + high) >> 1; if (a <= n / mid && a * mid <= n / mid && b <= n / mid && a * mid * mid + b * mid + c <= n) { result = Math.max(result, mid); low = mid + 1; } else { high = mid - 1; } } return result; } long calculate3() { long result = 0; for (long a : f) { long B0 = a + 1; if (a > n / B0 || a * B0 > n / B0) { break; } for (long b : f) { long B1 = Math.max(B0, b + 1); if (a > n / B1 || a * B1 > n / B1 || b * B1 > n || a * B1 * B1 + b * B1 > n) { break; } long pre = -1; for (long c : f) { long B2 = Math.max(B1, c + 1); if (a > n / B2 || a * B2 > n / B2 || b * B2 > n || a * B2 * B2 + b * B2 + c > n) { break; } if (pre != -1 && a * pre * pre + b * pre + c < n) { continue; } pre = searchMax(a, b, c); if (a * pre * pre + b * pre + c == n) { result += 1; } } } } return result; } long calculate2() { long result = 0; for (long a : f) { if (a * (a + 1) > n) { break; } for (long b : f) { long B = Math.max(a, b) + 1; if (a > n / B || a * B + b > n) { break; } long t = n - b; if (t % a == 0 && t / a > a && t / a > b) { result += 1; } } } return result; } public long find(long n) { if (isLucky(n)) { return -1; } this.n = n; generateLuckyNumber(0L); Collections.sort(f); return calculate2() + calculate3() + calculate4(); } }