zoukankan      html  css  js  c++  java
  • Codeforces 361D Levko and Array(二分)(DP)

    Levko and Array

    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Levko has an array that consists of integers: a1, a2, ... , an. But he doesn’t like this array at all.

    Levko thinks that the beauty of the array a directly depends on value c(a), which can be calculated by the formula:

    The less value c(a) is, the more beautiful the array is.

    It’s time to change the world and Levko is going to change his array for the better. To be exact, Levko wants to change the values of at most k array elements (it is allowed to replace the values by any integers). Of course, the changes should make the array as beautiful as possible.

    Help Levko and calculate what minimum number c(a) he can reach.

    Input

    The first line contains two integers n and k (1 ≤ k ≤ n ≤ 2000). The second line contains space-separated integers a1, a2, ... , an ( - 109 ≤ ai ≤ 109).

    Output

    A single number — the minimum value of c(a) Levko can get.

    Examples
    Input
    5 2
    4 7 4 7 4
    Output
    0
    Input
    3 1
    -100 0 100
    Output
    100
    Input
    6 3
    1 2 3 7 8 9
    Output
    1
    Note

    In the first sample Levko can change the second and fourth elements and get array: 4, 4, 4, 4, 4.

    In the third sample he can get array: 1, 2, 3, 4, 5, 6.

    【分析】题意很简单,就是给你一个数组,定义V为max(abs(a[i+1]-a[i])),给你K次改动机会,就是最多可以改动数组中的K个数,使得V最小。求最小的V。

     这题思路好漂亮啊(可能是我很菜没见过吧)。先二分答案,然后看看满足这个答案的情况下需要改动多少数,如果需要改动的数的个数<=K,则保存答案继续二分。

    强无敌。。。

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <string>
    #include <map>
    #include <stack>
    #include <queue>
    #include <vector>
    #define inf 0x3f3f3f3f
    #define met(a,b) memset(a,b,sizeof a)
    #define pb push_back
    #define mp make_pair
    typedef long long ll;
    using namespace std;
    const int N = 3e5+10;
    const int M = 1e6+10;
    ll dp[2005];
    ll a[2005];
    ll n,k;
    ll Dp_Slove(ll mid) {
        memset(dp,0x3f3f3f3f,sizeof(dp));
        dp[1]=0;
        for(ll i=2; i<=n; i++) {
            dp[i]=i-1;
            for(ll j=i-1; j>=1; j--) {
                if(abs(a[i]-a[j])<=mid*(i-j)) {
                    dp[i]=min(dp[i],dp[j]+i-j-1);
                }
            }
            if(dp[i]+n-i<=k)return 1;
        }
        if(dp[n]<=k)return 1;
        else return 0;
    }
    int main() {
        while(~scanf("%lld%lld",&n,&k)) {
            for(ll i=1; i<=n; i++) {
                scanf("%lld",&a[i]);
            }
            ll l=0,r=2000000050;
            ll ans=0;
            while(r>=l) {
                ll mid=(l+r)/2;
                if(Dp_Slove(mid)) {
                    r=mid-1;
                    ans=mid;
                } else l=mid+1;
            }
            printf("%lld
    ",ans);
        }
    }
  • 相关阅读:
    学习:类和对象——继承
    学习:类和对象——运算符重载
    域权限维持:Skeleton Key
    域权限维持:SSP密码记录
    学习:类和对象——友元
    学习:类和对象——对象模型和this指针
    学习:类和对象——静态成员变量和函数
    学习:类和对象——初始化列表和内部类
    学习:类和对象——深拷贝和浅拷贝
    二维数组中的查找
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/6494360.html
Copyright © 2011-2022 走看看