zoukankan      html  css  js  c++  java
  • Codeforces 361D Levko and Array(二分)(DP)

    Levko and Array

    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Levko has an array that consists of integers: a1, a2, ... , an. But he doesn’t like this array at all.

    Levko thinks that the beauty of the array a directly depends on value c(a), which can be calculated by the formula:

    The less value c(a) is, the more beautiful the array is.

    It’s time to change the world and Levko is going to change his array for the better. To be exact, Levko wants to change the values of at most k array elements (it is allowed to replace the values by any integers). Of course, the changes should make the array as beautiful as possible.

    Help Levko and calculate what minimum number c(a) he can reach.

    Input

    The first line contains two integers n and k (1 ≤ k ≤ n ≤ 2000). The second line contains space-separated integers a1, a2, ... , an ( - 109 ≤ ai ≤ 109).

    Output

    A single number — the minimum value of c(a) Levko can get.

    Examples
    Input
    5 2
    4 7 4 7 4
    Output
    0
    Input
    3 1
    -100 0 100
    Output
    100
    Input
    6 3
    1 2 3 7 8 9
    Output
    1
    Note

    In the first sample Levko can change the second and fourth elements and get array: 4, 4, 4, 4, 4.

    In the third sample he can get array: 1, 2, 3, 4, 5, 6.

    【分析】题意很简单,就是给你一个数组,定义V为max(abs(a[i+1]-a[i])),给你K次改动机会,就是最多可以改动数组中的K个数,使得V最小。求最小的V。

     这题思路好漂亮啊(可能是我很菜没见过吧)。先二分答案,然后看看满足这个答案的情况下需要改动多少数,如果需要改动的数的个数<=K,则保存答案继续二分。

    强无敌。。。

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <string>
    #include <map>
    #include <stack>
    #include <queue>
    #include <vector>
    #define inf 0x3f3f3f3f
    #define met(a,b) memset(a,b,sizeof a)
    #define pb push_back
    #define mp make_pair
    typedef long long ll;
    using namespace std;
    const int N = 3e5+10;
    const int M = 1e6+10;
    ll dp[2005];
    ll a[2005];
    ll n,k;
    ll Dp_Slove(ll mid) {
        memset(dp,0x3f3f3f3f,sizeof(dp));
        dp[1]=0;
        for(ll i=2; i<=n; i++) {
            dp[i]=i-1;
            for(ll j=i-1; j>=1; j--) {
                if(abs(a[i]-a[j])<=mid*(i-j)) {
                    dp[i]=min(dp[i],dp[j]+i-j-1);
                }
            }
            if(dp[i]+n-i<=k)return 1;
        }
        if(dp[n]<=k)return 1;
        else return 0;
    }
    int main() {
        while(~scanf("%lld%lld",&n,&k)) {
            for(ll i=1; i<=n; i++) {
                scanf("%lld",&a[i]);
            }
            ll l=0,r=2000000050;
            ll ans=0;
            while(r>=l) {
                ll mid=(l+r)/2;
                if(Dp_Slove(mid)) {
                    r=mid-1;
                    ans=mid;
                } else l=mid+1;
            }
            printf("%lld
    ",ans);
        }
    }
  • 相关阅读:
    115.子集和的目标值(大数据的01背包)
    116. 张程易,编程易(01背包)
    110.科技庄园(多重背包)(未结题)
    113.失恋28天-缝补礼物(多重背包)
    109.关路灯(区间dp)
    107.01背包变式题型:传纸条
    cojs.tk(所有题目来源) 树状数组专练
    在线评测的网站
    108.方格取数
    106.运输装备(二维01背包)
  • 原文地址:https://www.cnblogs.com/jianrenfang/p/6494360.html
Copyright © 2011-2022 走看看