zoukankan      html  css  js  c++  java
  • 【CV论文阅读】Network in Network

    目的:

    通过用Mlpconv层来替代传统的conv层,可以学习到更加抽象的特征。传统卷积层通过将前一层进行了线性组合,然后经过非线性激活得到(GLM),作者认为传统卷积层的假设是基于特征的线性可分。而Mlpconv层使用多层感知机,是一个深层的网络结构,可以近似任何非线性的函数。在网络中高层的抽象特征代表它对于相同concept的不同表现具有不变性(By abstraction we mean that the feature is invariant to the variants of the same concept)。微小的神经网络在输入的map上滑动,它的权值是共享的,而且Mlpconv层同样可以使用BP算法学习到其中的参数。传统卷积层(左)与Mlpcon层(右)对比如下:

     

     

    实现:

    对于非线性激活函数,例如一个ReLU函数有,k代表通道下标,Xij表示以像素(i,j)为中心的输入区域。在Mlpconv层中,每一个神经元计算的规则为

     

    n代表网络的层次。在上述b图可以看到,对于每一个神经元,生成的只有单个输出,而输入是多维(可以理解为多通道,在网络中的每一层是一个1*k的向量),可以把整个过程看作是一个1*1*k的卷积层作用在k通道上。在后续的一些论文中,常用到这样的方法来对输入进行降维(不是对图像的输入空间,而是通道降维),这样的非抽象的过程可以很好地把多维信息压缩。

     

    使用全局平均池化层代替FC层:

    使用这样的微网络的结构,可以抽象出更加好的局部特征,使得特征图与类别有一致性。在softmax的前一层去除FC层,则在这一层没有参数的优化,可以减少计算的消耗,降低这一层的过拟合。

    过程是这样的:对于每一个特征图计算它的平均数,然后把这些平均数组成一个特征向量,输入到后续的softmax层中。

    如下图:

     

    总结NIN的优点:

    (1)更好的局部抽象

    (2)去除全连接层,更少的参数

    (3)更小的过拟合

  • 相关阅读:
    Xcode4快速Doxygen文档注释 — 简明图文教程
    iOS6 旋转
    echart 判断数据是否为空
    echart tootip使用技巧
    下拉菜单自动向上或向下弹起
    前后台数据交互
    打包代码
    echart 设计宽度为百分比时,div撑不开
    无缝滚动(小鹏写)
    内置对象-Request对象
  • 原文地址:https://www.cnblogs.com/jie-dcai/p/5726266.html
Copyright © 2011-2022 走看看