zoukankan      html  css  js  c++  java
  • JAVA NIO 简介(转)

    1. 1.   基本 概念

    IO 是主存和外部设备 ( 硬盘、终端和网络等 ) 拷贝数据的过程。 IO 是操作系统的底层功能实现,底层通过 I/O 指令进行完成。

    所有语言运行时系统提供执行 I/O 较高级别的工具。 (c 的 printf scanf,java 的面向对象封装 )

    1. 2.    Java 标准 io 回顾

    Java 标准 IO 类库是 io 面向对象的一种抽象。基于本地方法的底层实现,我们无须关注底层实现。InputStreamOutputStream( 字节流 ) :一次传送一个字节。 ReaderWriter( 字符流 ) :一次一个字符。

    1. 3.    nio 简介

    nio 是 java New IO 的简称,在 jdk1.4 里提供的新 api 。 Sun 官方标榜的特性如下:

    –     为所有的原始类型提供 (Buffer) 缓存支持。

    –     字符集编码解码解决方案。

    –     Channel :一个新的原始 I/O 抽象。

    –     支持锁和内存映射文件的文件访问接口。

    –     提供多路 (non-bloking) 非阻塞式的高伸缩性网络 I/O 。

    本文将围绕这几个特性进行学习和介绍。

    1. 4.   Buffer&Chanel

    Channel 和 buffer 是 NIO 是两个最基本的数据类型抽象。

    Buffer:

    –        是一块连续的内存块。

    –        是 NIO 数据读或写的中转地。

    Channel:

    –        数据的源头或者数据的目的地

    –        用于向 buffer 提供数据或者读取 buffer 数据 ,buffer 对象的唯一接口。

    –         异步 I/O 支持

    图1:channel和buffer关系
     

    例子 1:CopyFile.java:

    Java代码  
    1. package sample;  
    2.   
    3. import java.io.FileInputStream;  
    4. import java.io.FileOutputStream;  
    5. import java.nio.ByteBuffer;  
    6. import java.nio.channels.FileChannel;  
    7.   
    8. public class CopyFile {  
    9.     public static void main(String[] args) throws Exception {  
    10.         String infile = "C:\copy.sql";  
    11.         String outfile = "C:\copy.txt";  
    12.         // 获取源文件和目标文件的输入输出流  
    13.         FileInputStream fin = new FileInputStream(infile);  
    14.         FileOutputStream fout = new FileOutputStream(outfile);  
    15.         // 获取输入输出通道  
    16.         FileChannel fcin = fin.getChannel();  
    17.         FileChannel fcout = fout.getChannel();  
    18.         // 创建缓冲区  
    19.         ByteBuffer buffer = ByteBuffer.allocate(1024);  
    20.         while (true) {  
    21.             // clear方法重设缓冲区,使它可以接受读入的数据  
    22.             buffer.clear();  
    23.             // 从输入通道中将数据读到缓冲区  
    24.             int r = fcin.read(buffer);  
    25.             // read方法返回读取的字节数,可能为零,如果该通道已到达流的末尾,则返回-1  
    26.             if (r == -1) {  
    27.                 break;  
    28.             }  
    29.             // flip方法让缓冲区可以将新读入的数据写入另一个通道  
    30.             buffer.flip();  
    31.             // 从输出通道中将数据写入缓冲区  
    32.             fcout.write(buffer);  
    33.         }  
    34.     }  
    35. }  

    其中 buffer 内部结构如下 ( 下图拷贝自资料 ):

    图2:buffer内部结构 

    一个 buffer 主要由 position,limit,capacity 三个变量来控制读写的过程。此三个变量的含义见如下表格:

    参数

    写模式   

    读模式

    position

    当前写入的单位数据数量。

    当前读取的单位数据位置。

    limit

    代表最多能写多少单位数据和容量是一样的。

    代表最多能读多少单位数据,和之前写入的单位数据量一致。

    capacity

    buffer 容量

    buffer 容量

    Buffer 常见方法:

    flip(): 写模式转换成读模式

    rewind() :将 position 重置为 0 ,一般用于重复读。

    clear() :清空 buffer ,准备再次被写入 (position 变成 0 , limit 变成 capacity) 。

    compact(): 将未读取的数据拷贝到 buffer 的头部位。

    mark() 、 reset():mark 可以标记一个位置, reset 可以重置到该位置。

    Buffer 常见类型: ByteBuffer 、 MappedByteBuffer 、 CharBuffer 、 DoubleBuffer 、 FloatBuffer 、IntBuffer 、 LongBuffer 、 ShortBuffer 。

    channel 常见类型 :FileChannel 、 DatagramChannel(UDP) 、 SocketChannel(TCP) 、ServerSocketChannel(TCP)

    在本机上面做了个简单的性能测试。我的笔记本性能一般。 ( 具体代码可以见附件。见nio.sample.filecopy 包下面的例子 ) 以下是参考数据:

    –        场景 1 : Copy 一个 370M 的文件

    –        场景 2: 三个线程同时拷贝,每个线程拷贝一个 370M 文件

    场景

    FileInputStream+

    FileOutputStream

    FileInputStream+

    BufferedInputStream+

    FileOutputStream

    ByteBuffer+

    FileChannel

    MappedByteBuffer

    +FileChannel

    场景一时间 ( 毫秒)                 

    25155

    17500

    19000

    16500

    场景二时间 ( 毫秒)

    69000

    67031

    74031

    71016

    1. 5.    nio.charset

    字符编码解码 : 字节码本身只是一些数字,放到正确的上下文中被正确被解析。向 ByteBuffer 中存放数据时需要考虑字符集的编码方式,读取展示 ByteBuffer 数据时涉及对字符集解码。

    Java.nio.charset 提供了编码解码一套解决方案。

    以我们最常见的 http 请求为例,在请求的时候必须对请求进行正确的编码。在得到响应时必须对响应进行正确的解码。

    以下代码向 baidu 发一次请求,并获取结果进行显示。例子演示到了 charset 的使用。

    例子 2BaiduReader.java

    Java代码  
    1. package nio.readpage;  
    2.   
    3. import java.nio.ByteBuffer;  
    4. import java.nio.channels.SocketChannel;  
    5. import java.nio.charset.Charset;  
    6. import java.net.InetSocketAddress;  
    7. import java.io.IOException;  
    8. public class BaiduReader {  
    9.     private Charset charset = Charset.forName("GBK");// 创建GBK字符集  
    10.     private SocketChannel channel;  
    11.     public void readHTMLContent() {  
    12.         try {  
    13.             InetSocketAddress socketAddress = new InetSocketAddress(  
    14. "www.baidu.com", 80);  
    15. //step1:打开连接  
    16.             channel = SocketChannel.open(socketAddress);  
    17.         //step2:发送请求,使用GBK编码  
    18.             channel.write(charset.encode("GET " + "/ HTTP/1.1" + " "));  
    19.             //step3:读取数据  
    20.             ByteBuffer buffer = ByteBuffer.allocate(1024);// 创建1024字节的缓冲  
    21.             while (channel.read(buffer) != -1) {  
    22.                 buffer.flip();// flip方法在读缓冲区字节操作之前调用。  
    23.                 System.out.println(charset.decode(buffer));  
    24.                 // 使用Charset.decode方法将字节转换为字符串  
    25.                 buffer.clear();// 清空缓冲  
    26.             }  
    27.         } catch (IOException e) {  
    28.             System.err.println(e.toString());  
    29.         } finally {  
    30.             if (channel != null) {  
    31.                 try {  
    32.                     channel.close();  
    33.                 } catch (IOException e) {  
    34.                 }  
    35.             }  
    36.         }  
    37.     }  
    38.     public static void main(String[] args) {  
    39.         new BaiduReader().readHTMLContent();  
    40.     }  
    41. }  

     

    1. 6.      非阻塞 IO

    关于非阻塞 IO 将从何为阻塞、何为非阻塞、非阻塞原理和异步核心 API 几个方面来理解。

    何为阻塞?

    一个常见的网络 IO 通讯流程如下 :



     

    图3:网络通讯基本过程

    从该网络通讯过程来理解一下何为阻塞 :

    在以上过程中若连接还没到来,那么 accept 会阻塞 , 程序运行到这里不得不挂起, CPU 转而执行其他线程。

    在以上过程中若数据还没准备好, read 会一样也会阻塞。

    阻塞式网络 IO 的特点:多线程处理多个连接。每个线程拥有自己的栈空间并且占用一些 CPU 时间。每个线程遇到外部为准备好的时候,都会阻塞掉。阻塞的结果就是会带来大量的进程上下文切换。且大部分进程上下文切换可能是无意义的。比如假设一个线程监听一个端口,一天只会有几次请求进来,但是该 cpu 不得不为该线程不断做上下文切换尝试,大部分的切换以阻塞告终。

    何为非阻塞?

    下面有个隐喻:

    一辆从 A 开往 B 的公共汽车上,路上有很多点可能会有人下车。司机不知道哪些点会有哪些人会下车,对于需要下车的人,如何处理更好?

    1. 司机过程中定时询问每个乘客是否到达目的地,若有人说到了,那么司机停车,乘客下车。 ( 类似阻塞式 )

    2. 每个人告诉售票员自己的目的地,然后睡觉,司机只和售票员交互,到了某个点由售票员通知乘客下车。 ( 类似非阻塞 )

    很显然,每个人要到达某个目的地可以认为是一个线程,司机可以认为是 CPU 。在阻塞式里面,每个线程需要不断的轮询,上下文切换,以达到找到目的地的结果。而在非阻塞方式里,每个乘客 ( 线程 ) 都在睡觉 ( 休眠 ) ,只在真正外部环境准备好了才唤醒,这样的唤醒肯定不会阻塞。

      非阻塞的原理

    把整个过程切换成小的任务,通过任务间协作完成。

    由一个专门的线程来处理所有的 IO 事件,并负责分发。

    事件驱动机制:事件到的时候触发,而不是同步的去监视事件。

    线程通讯:线程之间通过 wait,notify 等方式通讯。保证每次上下文切换都是有意义的。减少无谓的进程切换。

    以下是异步 IO 的结构:



     

    图4:非阻塞基本原理

    Reactor 就是上面隐喻的售票员角色。每个线程的处理流程大概都是读取数据、解码、计算处理、编码、发送响应。

    异步 IO 核心 API

    Selector

    异步 IO 的核心类,它能检测一个或多个通道 (channel) 上的事件,并将事件分发出去。

    使用一个 select 线程就能监听多个通道上的事件,并基于事件驱动触发相应的响应。而不需要为每个 channel 去分配一个线程。

    SelectionKey

    包含了事件的状态信息和时间对应的通道的绑定。

  • 相关阅读:
    状态机
    perl学习之五:列表和数组
    正则语言(转的 大额_skylar )
    算法分析-动态规划(最优二叉搜索树)
    算法分析-动态规划(矩阵链相乘,最长公共子序列,最长递增子序列)
    算法分析-动态规划(装配线调度)
    算法分析-leedcode正则题目
    算法分析-动态规划(cut_rod)
    算法分析-分治法的主方法【转的 凭海临风】
    正则表达式之match与exec【转的 楼兰之风】
  • 原文地址:https://www.cnblogs.com/jiligalaer/p/3968062.html
Copyright © 2011-2022 走看看