zoukankan      html  css  js  c++  java
  • 数字图像处理 第三章 源程序

    在学习数字图像处理时,书上介绍的都是理论,有时候光看理论有点儿枯燥,那就动手实现一下呗,自己以前也没有用过opencv,也是边学边练吧

    源图像在本书官网下载 http://www.imageprocessingplace.com/DIP-3E/dip3e_book_images_downloads.htm

    第三章

    图3.4 图像反转

    这个比较简单,实现了一下图像裁剪和图像反转

    源程序

    import cv2
    import numpy as np
    img = cv2.imread("1.tif",0)
    '''
    edges = cv2.Canny(img,50,150)
    cv2.imshow('img',img)#这一行显示错误,可能是因为路径有英文   #放狗屁,图像名称弄错了
    cv2.imshow('edges',edges)'''
    
    #裁剪图像
    m,n = np.shape(img)
    model = np.zeros((m,n))
    model[int(m/4):int(3*m/4),int(n/4):int(3*n/4) ] = 1
    img_cut = np.multiply(img,model)
    cv2.imshow('img_cut',img_cut.astype(np.uint8))#img_cut.astype(np.uint8)变换类型,保证图像正常显示
    cv2.imshow('img',img)
    #cv2.imwrite('1_cut.tif',img_cut)
    
    #反转图像
    img_reversion = 255-img
    cv2.imshow('img_reversion',img_reversion)
    #print(np.max(img))
    
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    结果

    注意

    图像路径必须为英文

    图3.8幂律变换

    源程序

    import cv2
    import numpy as np
    
    img = cv2.imread("1.tif",0)
    cv2.imshow("img",img)
    
    #幂律变换,c = 1,r = 0.6,注意变换前需要将灰度变换到0—1,这样才能经过点(1,1),和图像中的(L-1,L-1)对应
    
    img_max = np.max(img)
    img_0_1 = img/img_max
    
    #r = 0.6
    r_0_6 = img_0_1**0.6
    r_0_6 = r_0_6*img_max
    int_r_0_6 = r_0_6.astype(np.uint8)#把格式由浮点型转化为整型才能显示正确
    cv2.imshow("r = 0.6",int_r_0_6)
    cv2.imwrite("r0.6.tif",int_r_0_6)
    
    #r = 0.4
    r_0_4 = img_0_1**0.4
    r_0_4 = r_0_4*img_max
    int_r_0_4 = r_0_4.astype(np.uint8)#把格式由浮点型转化为整型才能显示正确
    cv2.imshow("r = 0.4",int_r_0_4)
    cv2.imwrite("r0.4.tif",int_r_0_4)
    
    #r = 0.3
    r_0_3 = img_0_1**0.3
    r_0_3 = r_0_3*img_max
    int_r_0_3 = r_0_3.astype(np.uint8)#把格式由浮点型转化为整型才能显示正确
    cv2.imshow("r = 0.3",int_r_0_3)
    cv2.imwrite("r0.3.tif",int_r_0_3)
    
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    结果

     

    注意

    1、进行幂律变换前需要将灰度变换到0-1的范围内,

    2、计算后的像素矩阵是浮点型,将其转化为整型才能正常显示

    图3.20直方图均衡

    源程序

    #例3.5
    
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    
    img = cv2.imread("1.tif",0)
    
    L = np.max(img)+1  #计算灰度范围
    rk = np.arange(L)
    m,n = np.shape(img)
    
    #统计每个灰度级的个数
    nk = np.zeros(L)
    for i in range(m):
        for j in range(n):
            nk[img[i,j]] += 1
    
    pk = nk/(m*n) #3.3-7
    f1 = plt.figure(1)
    plt.plot(rk,pk)
    #plt.show()
    
    sk = np.zeros(L)
    #计算变换后的灰度
    for i in range(L):
        #3.3-8
        for j in range(i):
            sk[i] += (L-1)*pk[j]
     
    f2 = plt.figure(2)
    plt.plot(rk,sk)
    #plt.show()
    
    #进行灰度变换
    img_trans = np.zeros((m,n))
    for i in range(m):
        for j in range(n):
            img_trans[i,j] = sk[img[i,j]]
    
    int_img_trans = img_trans.astype(np.uint8)#把格式由浮点型转化为整型才能显示正确
    cv2.imshow("img",img)
    cv2.imshow("img_trans",int_img_trans)
    
    #统计变换后每个灰度级的个数
    nk_trans = np.zeros(L)
    for i in range(m):
        for j in range(n):
            nk_trans[int_img_trans[i,j]] += 1
    
    pk_trans = nk_trans/(m*n) #3.3-7
    f3 = plt.figure(3)
    plt.plot(rk,pk_trans)
    plt.show()
    
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    结果

    图3.20 局部直方图均衡

     

    详见:https://www.cnblogs.com/jingxin-gewu/p/13341815.html

    注意

    1、numpy计算的结果为浮点型,图像中的是整型,要注意类型的转换

    2、想办法改进灰度计算的算法

    3、由于整个图像进行局部直方图均衡计算量太大,可以考虑将其裁剪到四分之一或九分之一再计算

    图3.33平滑滤波

    源代码

    #例3.13
    
    #模糊图像 图3.33
    
    import cv2
    import numpy as np
    
    img = cv2.imread("1.tif",0)
    
    m,n = np.shape(img)
    
    #填充
    model = 9  #模板的尺寸
    img_fill = np.zeros((int(m+(model-1)*2),int(n+(model-1)*2)),dtype=int)
    model_fill = int((model-1)/2)
    img_fill[model_fill:int(m+model_fill),model_fill:int(n+model_fill)] = img #注意,应该写道m+1
    #int_img_fill = img_fill.astype(np.uint8)
    img_trans = np.zeros((m,n),dtype=int)
    for i in range(m):
        for j in range(n):
            img_temp = np.zeros((model,model),dtype=int)
            img_temp[:,:] = img_fill[i:i+model,j:j+model]
            img_trans[i,j] = np.sum(img_temp)/(model*model)
    
    #阈值处理
    threshold_percent = 65
    threshold = np.max(img)*threshold_percent/100
    img_trans_thres = np.zeros((m,n))
    for i in range(m):
        for j in range(n):
            if img_trans[i,j]<threshold:
                img_trans_thres[i,j] = 0
            else:
                img_trans_thres[i,j] = 1
    
    
    
    
    print("end")
    cv2.imshow("img",img)
    cv2.imshow("img_trsns",img_trans.astype(np.uint8))
    cv2.imshow("img_trans_thres",img_trans_thres)
    
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    结果

    总结

    滤波效果与模板大小,阈值这两个关键因素密切相关

    图3.35 中值滤波器

    源程序

    #例3.14,图3.35
    
    import numpy as np
    import cv2
    
    img = cv2.imread('2.tif',0)
    m,n = np.shape(img)
    
    #填充图像
    img_fill = np.zeros((m+2,n+2),int)
    img_fill[1:m+1,1:n+1] = img
    img_temp = np.zeros((3,3),int)
    img_trans = np.zeros((m,n),int)
    for i in range(m):
        for j in range(n):
            img_temp = np.ravel(img_fill[i:i+3,j:j+3]) #散开
            img_trans[i,j] = np.median(img_temp) #求中值
    
    cv2.imshow("img",img)
    cv2.imshow("img_trans",img_trans.astype(np.uint8))
    
    cv2.waitKey(0)
    cv2.destroyAllWindows()

     结果

    ------------恢复内容结束------------

  • 相关阅读:
    [MyBatis]最简MyBatis工程
    eclipse中如何删除已经添加到 Web App Libraries 中引用的jar包
    day48_项目管理学习笔记
    项目流程之失败的案例
    项目流程之婚礼流程
    day47_Maven学习笔记
    快还要更快,让PHP 7 运行更加神速
    Linux服务器时间同步
    Win10系统开启Linux Bash命令行
    红帽RHOP 8 发布一条龙方案
  • 原文地址:https://www.cnblogs.com/jingxin-gewu/p/13300395.html
Copyright © 2011-2022 走看看