zoukankan      html  css  js  c++  java
  • 超超超简单的bfs——POJ-1915

    Knight Moves
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 26102   Accepted: 12305

    Description

    Background
    Mr Somurolov, fabulous chess-gamer indeed, asserts that no one else but him can move knights from one position to another so fast. Can you beat him?
    The Problem
    Your task is to write a program to calculate the minimum number of moves needed for a knight to reach one point from another, so that you have the chance to be faster than Somurolov.
    For people not familiar with chess, the possible knight moves are shown in Figure 1.

    Input

    The input begins with the number n of scenarios on a single line by itself.
    Next follow n scenarios. Each scenario consists of three lines containing integer numbers. The first line specifies the length l of a side of the chess board (4 <= l <= 300). The entire board has size l * l. The second and third line contain pair of integers {0, ..., l-1}*{0, ..., l-1} specifying the starting and ending position of the knight on the board. The integers are separated by a single blank. You can assume that the positions are valid positions on the chess board of that scenario.

    Output

    For each scenario of the input you have to calculate the minimal amount of knight moves which are necessary to move from the starting point to the ending point. If starting point and ending point are equal,distance is zero. The distance must be written on a single line.

    Sample Input

    3
    8
    0 0
    7 0
    100
    0 0
    30 50
    10
    1 1
    1 1

    Sample Output

    5
    28
    0

    下棋,从一个坐标到另一个坐标最少几步,
    第一个输入T个样例
    第一行一个数L表示棋盘大小
    然后两行两个坐标
     1 #include<stdio.h>
     2 #include<queue>
     3 #include<string.h>
     4 using namespace std;
     5 int p[333][333];
     6 int main()
     7 {
     8     int T;
     9     scanf("%d", &T);
    10     while (T--)
    11     {
    12         memset(p, -1, sizeof(p));
    13         queue<int>q;
    14         int L;
    15         scanf("%d", &L);
    16         int a, b, x, y;
    17         scanf("%d%d%d%d", &a, &b, &x, &y);
    18         p[a][b] = 0;
    19         q.push(a * 1000 + b);//一个坐标转为一个数——前三位是横坐标后三位是纵坐标
    20         while (!q.empty())
    21         {
    22             int t = q.front();
    23             q.pop();
    24             a = t / 1000;
    25             b = t % 1000;
    26             if (a == x&&b == y)
    27             {
    28                 printf("%d
    ", p[a][b]);
    29                 break;
    30             }
    31             if (a - 1 >= 0 && b + 2 < L&&p[a - 1][b + 2] == -1)
    32             {
    33                 q.push((a - 1) * 1000 + (b + 2));
    34                 p[a - 1][b + 2] = p[a][b] + 1;
    35             }//
    36             if (a + 1 < L && b + 2 < L&&p[a + 1][b + 2] == -1)
    37             {
    38                 q.push((a + 1) * 1000 + (b + 2));
    39                 p[a + 1][b + 2] = p[a][b] + 1;
    40             }//
    41             if (a - 2 >= 0 && b + 1 < L&&p[a - 2][b + 1] == -1)
    42             {
    43                 q.push((a - 2) * 1000 + (b + 1));
    44                 p[a - 2][b + 1] = p[a][b] + 1;
    45             }//
    46             if (a - 2 >= 0 && b - 1 >=0&&p[a - 2][b - 1] == -1)
    47             {
    48                 q.push((a - 2) * 1000 + (b - 1));
    49                 p[a - 2][b - 1] = p[a][b] + 1;
    50             }//
    51             if (a + 2 <L && b + 1 < L&&p[a + 2][b + 1] == -1)
    52             {
    53                 q.push((a + 2) * 1000 + (b + 1));
    54                 p[a + 2][b + 1] = p[a][b] + 1;
    55             }//
    56             if (a + 2<L && b - 1 >=0&&p[a + 2][b - 1] == -1)
    57             {
    58                 q.push((a + 2) * 1000 + (b - 1));
    59                 p[a + 2][b - 1] = p[a][b] + 1;
    60             }//
    61             if (a - 1 >= 0 && b - 2 >=0&&p[a - 1][b - 2] == -1)
    62             {
    63                 q.push((a - 1) * 1000 + (b - 2));
    64                 p[a - 1][b - 2] = p[a][b] + 1;
    65             }//
    66             if (a + 1<L && b - 2>=0&&p[a + 1][b - 2] == -1)
    67             {
    68                 q.push((a + 1) * 1000 + (b - 2));
    69                 p[a + 1][b - 2] = p[a][b] + 1;
    70             }//八个可能的位置
    71         }
    72     }
    73 }
  • 相关阅读:
    clientHeight获取屏幕可视化高度
    vue-particles粒子动画插件的使用和爬坑出现垂直滚动条
    合并数组 扩展运算符
    深拷贝和类型检测
    05showLoading配置和 <text>标签的坑 如何发送请求 分享功能和懒加载
    HDU1875 畅通工程再续
    洛谷P1991 无线通讯网(最小生成树性质+连通块)
    Codeforces Round #621 (Div. 1 + Div. 2) C. Cow and Message
    洛谷P2330 [SCOI2005]繁忙的都市
    HDU2612 Find a way (跑两遍BFS)
  • 原文地址:https://www.cnblogs.com/jinmingyi/p/6832497.html
Copyright © 2011-2022 走看看