- 显然合法性只与每个数所含的质因子有关,考虑状压 (dp) 若记录所有质因子状态显然爆炸,注意到每个数最多有一个超过 (sqrt 500) 的大质因子,而其他的小质因子只有 (8) 种.所以可以对小质因子状压,大质因子单独考虑.
- 记 (f[j][k]) 表示当前第一个人选择的数含有质因子的集合为 (j) ,第二个人的为 (k) 时的方案数.
- (g[0/1][j][k]) 表示当前第一个人选择的数含有质因子的集合为 (j) ,第二个人的为 (k) ,把这个大质因子放入第一个/第二个人中的方案数.
- 计算时,若新加入的大质数与上一个不同,就将 (f) 赋值到 (g) 中.
- 然后(dp) 计算 (g) .
- 若新加入的大质数与下一个不同,就根据 (g) 计算 (f) ,计算时要减去一次两个都不放的情况.
- 时间复杂度为 (O(8^8)),在 (1e7) 的级别,因为很多状态不合法,不会有取模运算,常数较小,可以通过.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
const int MAXP=8,MAXS=(1<<8)+10,MAXN=520;
const int lim=1<<8;
int prime[]= {2,3,5,7,11,13,17,19};
int f[MAXS][MAXS],g[2][MAXS][MAXS];
int n,P;
inline int add(int a,int b)
{
return (a + b) % P;
}
inline int mul(int a,int b)
{
return 1LL * a * b % P;
}
void upd(int &x,int y)
{
x=add(x,y);
}
struct node
{
int s;
int bp;//大质因子
bool operator < (const node &rhs) const
{
return bp<rhs.bp;
}
} a[MAXN];
void init(int i)
{
int x=i;
int s=0;
for(int j=0; j<MAXP; ++j)
{
if(x%prime[j]==0)
{
s|=1<<j;
while(x%prime[j]==0)
x/=prime[j];
}
}
a[i].s=s;
a[i].bp=x;
}
int main()
{
n=read(),P=read();
for(int i=2; i<=n; ++i)
init(i);
f[0][0]=1;
int ans=0;
sort(a+2,a+2+n-1);
for(int i=2; i<=n; ++i)
{
if(i==2 || a[i].bp==1 || a[i].bp!=a[i-1].bp)
{
memcpy(g[0],f,sizeof f);
memcpy(g[1],f,sizeof f);
}
for(int j=lim-1; j>=0; --j)
for(int k=lim-1; k>=0; --k)
{
if(j&k)
continue;
if(!(a[i].s & k))
upd(g[0][j|a[i].s][k],g[0][j][k]);
if(!(a[i].s & j))
upd(g[1][j][k|a[i].s],g[1][j][k]);
}
if(i==n || a[i].bp==1 || a[i].bp!=a[i+1].bp)
{
for(int j=lim-1; j>=0; --j)
for(int k=lim-1; k>=0; --k)
{
if(j&k)
continue;
f[j][k]=add(add(g[0][j][k],g[1][j][k]),P-f[j][k]);
if(i==n)
upd(ans,f[j][k]);
}
}
}
cout<<ans<<endl;
return 0;
}