Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
首先,挨个分析每个A[i]能trapped water的容量,然后将所有的A[i]的trapped water容量相加即可
其次,对于每个A[i]能trapped water的容量,取决于A[i]左右两边的高度(可延展)较小值与A[i]的差值,即volume[i] = [min(left[i], right[i]) - A[i]] * 1,这里的1是宽度,如果the width of each bar is 2,那就要乘以2了”
那么如何求A[i]的左右高度呢? 要知道,能盛多少水主要看短板。那么对每个A[i]来说,要求一个最高的左短板,再求一个最高的右短板,这两个直接最短的板子减去A[i]原有的值就是能成多少水了。
所以需要两遍遍历,一个从左到右,找最高的左短板;一个从右到左,找最高的右短板。最后记录下盛水量的总值就是最终结果了。
package leetcode2; public class TrappingRainWater { public static int Trapping(int[] A){ if(A==null){ return 0; } int maxvol=0; int lmax=0; int[] vol=new int[A.length]; int[] left=new int[A.length]; int[] right=new int[A.length]; for(int i=0;i<A.length;i++){ left[i]=Math.max(lmax, A[i]); lmax=Math.max(lmax,A[i]); } int rmax=0; for(int i=A.length-1;i>0;i--){ right[i]=Math.max(rmax,A[i] ); rmax=Math.max(rmax, A[i]); } for(int i=0;i<A.length;i++){ vol[i]=1*(Math.min(left[i], right[i])-A[i]); if(vol[i]>0){ maxvol=maxvol+vol[i]; } } return maxvol; } public static void main(String[] args) { // TODO Auto-generated method stub int[] a={0,1,0,2,1,0,1,3,2,1,2,1}; System.out.println(Trapping(a)); } }