zoukankan      html  css  js  c++  java
  • Aggressive Cows 二分

    Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are located along a straight line at positions x1,...,xN (0 <= xi <= 1,000,000,000). 

    His C (2 <= C <= N) cows don't like this barn layout and become aggressive towards each other once put into a stall. To prevent the cows from hurting each other, FJ want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?

    Input

    * Line 1: Two space-separated integers: N and C 

    * Lines 2..N+1: Line i+1 contains an integer stall location, xi

    Output

    * Line 1: One integer: the largest minimum distance

    Sample Input

    5 3
    1
    2
    8
    4
    9

    Sample Output

    3

    Hint

    OUTPUT DETAILS: 

    FJ can put his 3 cows in the stalls at positions 1, 4 and 8, resulting in a minimum distance of 3. 

    Huge input data,scanf is recommended.
    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    using namespace std;
    #define MAXN 100001
    #define INF 1000000001
    /*
        将奶牛分配到到多个点,使得他们之间的最小距离最大
        check(x)函数  最小距离为x的时候能否放下n头奶牛
    */
    int n, c, a[MAXN];
    bool check(int x)
    {
        int tmp = a[0], cnt = 1;
        for(int i=1;i<n;i++)
        { 
            if (a[i] - tmp >= x)
            {
                cnt++;
                tmp = a[i];
            }
        }
        return (cnt >= c);
    }
    int main()
    {
        while (scanf("%d%d", &n, &c) != EOF)
        {
            int  Max = -1;
            for (int i = 0; i < n; i++)
            {
                scanf("%d", &a[i]);
                Max = max(Max, a[i]);
            }
            int beg = 1, end = Max,ans=0;
            sort(a, a + n);
            while (beg <= end)
            {
                int mid = (beg + end) / 2;
                if (check(mid))
                {
                    ans = mid;
                    beg = mid + 1;
                }
                else
                    end = mid - 1;
            }
            printf("%d
    ", ans);
        }
    }
  • 相关阅读:
    Spring框架之什么是IOC的功能?
    Spring框架的特点
    spring框架的概述与入门
    struts框架总结
    struts框架之总结OGNL表达式的特殊的符号
    struts框架值栈问题七之EL表达式也会获取到值栈中的数据
    struts框架问题六之从值栈中获取值
    struts框架问题五之向值栈中保存数据
    struts框架问题四之获取到值栈的对象
    java获取屏幕密度
  • 原文地址:https://www.cnblogs.com/joeylee97/p/6702323.html
Copyright © 2011-2022 走看看