zoukankan      html  css  js  c++  java
  • Pie POJ 3122 二分搜索

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 17324   Accepted: 5835   Special Judge

    Description

    My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.

    My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size. 

    What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.

    Input

    One line with a positive integer: the number of test cases. Then for each test case:
    • One line with two integers N and F with 1 ≤ N, F ≤ 10 000: the number of pies and the number of friends.
    • One line with N integers ri with 1 ≤ ri ≤ 10 000: the radii of the pies.

    Output

    For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10−3.

    Sample Input

    3
    3 3
    4 3 3
    1 24
    5
    10 5
    1 4 2 3 4 5 6 5 4 2

    Sample Output

    25.1327
    3.1416
    50.2655

    Source

    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<sstream>
    #include<algorithm>
    #include<queue>
    #include<deque>
    #include<iomanip>
    #include<vector>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    #include<fstream>
    #include<memory>
    #include<list>
    #include<string>
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    #define MAXN 10009
    #define N 21
    #define MOD 1000000
    #define INF 1000000009
    const double eps = 1e-6;
    const double PI = acos(-1.0);
    /*
    给定n个圆 和 F个朋友
    要求把这n个圆 分成(F+1)份 每一份要尽量大!
    直接二分搜索 每一份的大小
    */
    double s[MAXN];//面积
    int n, f;
    int sgn(double x)
    {
        if (fabs(x) < eps)
            return 0;
        else if (x > 0)
            return 1;
        else
            return -1;
    }
    bool check(double x)
    {
        int cnt = 0;
        for (int i = 0; i < n; i++)
        {
            cnt += floor(s[i] / x);
        }
        return cnt >= (f + 1);
    }
    int main()
    {
        int T;
        scanf("%d", &T);
        while (T--)
        {
            scanf("%d%d", &n, &f);
            double tmp, l = 0.0, r;
            for (int i = 0; i < n; i++)
            {
                scanf("%lf", &tmp);
                s[i] = PI*tmp*tmp;
                r = max(s[i], r);
            }
            while (sgn(r-l)>0)
            {
                double mid = (l + r) / 2;
                if (check(mid))
                    l = mid;
                else
                    r = mid;
            }
            printf("%.4lf
    ", l);
        }
    }
  • 相关阅读:
    安利博客
    python 的高阶算法之堆排序
    functools模块用途
    类型注解
    高阶函数和装饰器
    生成器

    递归函数
    匿名函数
    函数 的 返回值作用域
  • 原文地址:https://www.cnblogs.com/joeylee97/p/6958386.html
Copyright © 2011-2022 走看看