zoukankan      html  css  js  c++  java
  • Rikka with Phi 线段树

    Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds of problems. Here, we get a new problem. 

    There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board: 

    1. "C A B C" Color the board from segment A to segment B with color C. 
    2. "P A B" Output the number of different colors painted between segment A and segment B (including). 

    In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, ... color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your. 

    Input

    First line of input contains L (1 <= L <= 100000), T (1 <= T <= 30) and O (1 <= O <= 100000). Here O denotes the number of operations. Following O lines, each contains "C A B C" or "P A B" (here A, B, C are integers, and A may be larger than B) as an operation defined previously.

    Output

    Ouput results of the output operation in order, each line contains a number.

    Sample Input

    2 2 4
    C 1 1 2
    P 1 2
    C 2 2 2
    P 1 2
    

    Sample Output

    2
    1

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<vector>
    #include<string>
    #include<cstring>
    using namespace std;
    typedef long long LL;
    const int MAXN = 1e7 + 9;
    const int N = 3e5 + 10;
    LL euler[MAXN];
    void geteuler()
    {
        memset(euler, 0, sizeof(euler));
        euler[1] = 1;
        for (LL i = 2; i < MAXN; i++)
        {
            if (!euler[i])
                for (LL j = i; j < MAXN; j += i) 
                {
                    if (!euler[j]) euler[j] = j;
                    euler[j] = euler[j] / i * (i - 1);
                }
        }
    }
    struct node
    {
        int l, r;
        LL sum, laz;
    }T[N * 4 + 7];
    LL a[N];
    void pushup(int p)
    {
        T[p].sum = T[p * 2].sum + T[p * 2 + 1].sum;
        if (T[p * 2].laz == T[p * 2 + 1].laz)
            T[p].laz = T[p * 2].laz;
        else
            T[p].laz = 0;
    }
    void pushdown(int p)
    {
        if (T[p].laz)
        {
            T[p * 2].laz = T[p * 2 + 1].laz = T[p].laz;
            T[p * 2].sum = T[p].laz * (T[p * 2].r - T[p * 2].l + 1);
            T[p * 2 + 1].sum = T[p].laz * (T[p * 2 + 1].r - T[p * 2 + 1].l + 1);
        }
    }
    void update1(int x, int l, int r)
    {
        if (T[x].laz&&T[x].l == l&&T[x].r == r)
        {
            T[x].laz = euler[T[x].laz];
            T[x].sum = T[x].laz * (T[x].r - T[x].l + 1);
            return;
        }
        pushdown(x);
        int mid = (T[x].l + T[x].r) / 2;
        if (r <= mid)
            update1(x * 2, l, r);
        else if(l > mid)
            update1(x * 2 + 1, l , r);
        else
        {
            update1(x * 2, l, mid);
            update1(x * 2 + 1, mid + 1, r);
        }
        pushup(x);
    }
    void update2(int x, int l, int r, LL val)
    {
        if (l == T[x].l&&r == T[x].r)
        {
            T[x].laz = val;
            T[x].sum = (T[x].r - T[x].l + 1)*T[x].laz;
            return;
        }
        pushdown(x);
        int mid = (T[x].l + T[x].r) / 2;
        if (r <= mid)
            update2(x * 2, l, r, val);
        else if (l > mid)
            update2(x * 2 + 1, l, r, val);
        else
        {
            update2(x * 2, l, mid, val);
            update2(x * 2 + 1, mid + 1, r, val);
        }
        pushup(x);
    }
    
    void build(int x, int l, int r)
    {
        T[x].l = l, T[x].r = r;
        T[x].laz = T[x].sum = 0;
        if (l == r)
        {
            T[x].laz =  T[x].sum = a[l];
            return;
        }
        int mid = (l + r) / 2;
        build(x * 2, l, mid);
        build(x * 2 + 1, mid + 1, r);
        pushup(x);
    }
    
    LL query(int x, int l, int r)
    {
        if (T[x].l == l&&T[x].r == r)
            return T[x].sum;
        int mid = (T[x].l + T[x].r) / 2;
        pushdown(x);
        if (r <= mid)
            return query(x * 2, l, r);
        else if (l > mid)
            return query(x * 2 + 1, l, r);
        else
            return query(x * 2, l, mid) + query(x * 2 + 1, mid + 1, r);
    }
    int t, n, m;
    int main()
    {
        geteuler();
        ios::sync_with_stdio(0);
        scanf("%d", &t);
        while (t--)
        {
            scanf("%d%d", &n, &m);
            for (int i = 1; i <= n; i++)
                scanf("%lld", &a[i]);
            build(1, 1, n);
            int op, L, R;
            LL tmp;
            while (m--)
            {
                scanf("%d%d%d", &op, &L, &R);
                if (op == 1)
                {
                    update1(1, L, R);
                }
                else if (op == 2)
                {
                    scanf("%lld", &tmp);
                    update2(1, L, R, tmp);
                }
                else if (op == 3)
                {
                    printf("%lld
    ", query(1, L, R)); 
                }
            }
        }
    }
    
    

    Count Color

     
    修改节点的值,查询区间总和
    这里laz就表示当前区间元素是否相同
    
    pushdown 顺推
    pushup
    只有当左右两边都是整块而且左右边的颜色相等才能设置laz = 1
    这里多了一个左右都是整块的条件是因为在欧拉的题目中laz>0就表示是整块了
    
    Rikka with Phi 
    laz有两个含义:laz==0 表示当前区间多个元素值不同
    laz == x 表示当前区间元素的值都是x
    修改节点的值,查询区间总和
    pushdown
    顺推即可,laz 相同, sum计算一下
    pushup
    当前sum = 子区间sum之和
    当前laz = 子区间laz 相同? 子区间laz,否则为0
    
    
    
    分为块状区域统一处理,当处理比当前块更小的块的时候,把之前积累的信息传递下去,递归处理
    
    两个题的区别在于颜色的题目不需要Laz来表示当前值,当前值用color表示即可
    
    PUSHDOWN 
    更新结点数据
    PUSHUP
    根据结点更新当前点的数据
  • 相关阅读:
    【算法】剑指第二版面试题6 :从尾到头打印链表
    Go电商秒杀 (1)
    Go秒杀服务端优化
    Linux AUFS 文件系统
    mount挂载虚拟文件系统
    自己动手写docker之Linux命令(CentOS7.7)
    自己动手写docker之namespace和cgroup
    【协作式原创】自己动手写docker之urfave cli
    Go 1.14之前的死循环Case
    linux下定时执行任务的方法
  • 原文地址:https://www.cnblogs.com/joeylee97/p/7403933.html
Copyright © 2011-2022 走看看