zoukankan      html  css  js  c++  java
  • 778. Swim in Rising Water

    package LeetCode_778
    
    import java.util.*
    
    /**
     * 778. Swim in Rising Water
     * https://leetcode.com/problems/swim-in-rising-water/
     * On an N x N grid, each square grid[i][j] represents the elevation at that point (i,j).
    Now rain starts to fall. At time t, the depth of the water everywhere is t.
    You can swim from a square to another 4-directionally adjacent square if and only if the elevation of both squares individually are at most t.
    You can swim infinite distance in zero time. Of course, you must stay within the boundaries of the grid during your swim.
    You start at the top left square (0, 0). What is the least time until you can reach the bottom right square (N-1, N-1)?
    
    Example 1:
    Input: [[0,2],[1,3]]
    Output: 3
    Explanation:
    At time 0, you are in grid location (0, 0).
    You cannot go anywhere else because 4-directionally adjacent neighbors have a higher elevation than t = 0.
    You cannot reach point (1, 1) until time 3.
    When the depth of water is 3, we can swim anywhere inside the grid.
    
    Example 2:
    Input: [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]]
    Output: 16
    Explanation:
    0  1  2  3  4
    24 23 22 21  5
    12 13 14 15 16
    11 17 18 19 20
    10  9  8  7  6
    The final route is marked in bold.
    We need to wait until time 16 so that (0, 0) and (4, 4) are connected.
    
    Note:
    1. 2 <= N <= 50.
    2. grid[i][j] is a permutation of [0, ..., N*N - 1].
     * */
    class Solution {
        /*
        * solution: BFS + Binary Search,
        * binary search to find the minimum walkable rain level, for each level use bfs to check if a path,
        * Time:O(log(n^2)*n^2), Space:O(n^2), because number of node is n^2
        * */
        fun swimInWater(grid: Array<IntArray>): Int {
            if (grid == null || grid.isEmpty()) {
                return 0
            }
            val n = grid.size
            var left = grid[0][0]
            var right = n * n - 1
            while (left < right) {
                val mid = left + (right - left) / 2
                if (hasPath(grid, mid)) {
                    right = mid
                } else {
                    left = mid + 1
                }
            }
            return left
        }
    
        private fun hasPath(grid: Array<IntArray>, waterHeight: Int): Boolean {
            val queue = LinkedList<Pair<Int, Int>>()
            val n = grid.size
            val visited = BooleanArray(n * n)
            val directions = intArrayOf(0, 1, 0, -1, 0)
            queue.offer(Pair(0, 0))
            //set the index to visited
            visited[0 * n + 0] = true
            while (queue.isNotEmpty()) {
                val cur = queue.pop()
                if (cur.first == n - 1 && cur.second == n - 1) {
                    return true
                }
                for (d in 0 until 4) {
                    val newX = cur.first + directions[d]
                    val newY = cur.second + directions[d + 1]
                    if (newX < 0 || newY < 0 || newX >= n || newY >= n || grid[newX][newY] > waterHeight) {
                        continue
                    }
                    if (visited[newX * n + newY]) {
                        continue
                    }
                    //set the index to visited
                    visited[newX * n + newY] = true
                    queue.offer(Pair(newX, newY))
                }
            }
            return false
        }
    }
  • 相关阅读:
    SpringMVC07处理器方法的返回值
    html01基本标签
    java09数组的使用
    SpringMVC06以对象的方式获取前台的数据
    面向对象的程序设计(五)借用构造函数继承
    面向对象的程序设计(四)原型链继承
    面向对象的程序设计(三)对象字面量创建原型方法与直接创建原型方法的区别
    面向对象的程序设计(二)理解各种方法和属性typeof、instanceof、constructor、prototype、__proto__、isPrototypeOf、hasOwnProperty
    面向对象的程序设计(一)创建对象的各种方法
    二叉树的层次遍历
  • 原文地址:https://www.cnblogs.com/johnnyzhao/p/14070204.html
Copyright © 2011-2022 走看看