zoukankan      html  css  js  c++  java
  • numpy.tile用法

    先说下在numpy中,个人对array的维度的比较形象的理解:
    array的维度就是从最外边的[]出发(可理解为array的声明),一直找到具体数值而经过的[]的数量(含最后的数值,它是最后一维)
    比如:

    • (1) [1,2]的维度是(2,),因为最外层的[]仅仅是声明,穿过该[],直接找到数值,所以是一维的,数量是2.

    • (2)

      [[1,2],
      [3,4]] 的维度是(2,2),从最外层[]出发,向里走,有[1,2],[3,4],所以第一维的数量是2,继续往里走,遇到'1,2'和'3,4',所以第二维的数量是2

    • (3)

    [[[1,2],
    [3,4]],
    [[5,6],
    [7,8]]]

    的维度是(2,2,2),从最外层[],有两个[[]],所以第一维度是2,继续往里走有两个[],所以第二维度是2,继续走是两个数值,达到了最后一维,且最后一维的数量也是2.

    import numpy as np
    
    help(np.tile)
    
    Help on function tile in module numpy.lib.shape_base:
    
    tile(A, reps)
        Construct an array by repeating A the number of times given by reps.
        
        If `reps` has length ``d``, the result will have dimension of
        ``max(d, A.ndim)``.
        
        If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new
        axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
        or shape (1, 1, 3) for 3-D replication. If this is not the desired
        behavior, promote `A` to d-dimensions manually before calling this
        function.
        
        If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it.
        Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as
        (1, 1, 2, 2).
        
        Note : Although tile may be used for broadcasting, it is strongly
        recommended to use numpy's broadcasting operations and functions.
        
        Parameters
        ----------
        A : array_like
            The input array.
        reps : array_like
            The number of repetitions of `A` along each axis.
        
        Returns
        -------
        c : ndarray
            The tiled output array.
        
        See Also
        --------
        repeat : Repeat elements of an array.
        broadcast_to : Broadcast an array to a new shape
        
        Examples
        --------
        >>> a = np.array([0, 1, 2])
        >>> np.tile(a, 2)
        array([0, 1, 2, 0, 1, 2])
        >>> np.tile(a, (2, 2))
        array([[0, 1, 2, 0, 1, 2],
               [0, 1, 2, 0, 1, 2]])
        >>> np.tile(a, (2, 1, 2))
        array([[[0, 1, 2, 0, 1, 2]],
               [[0, 1, 2, 0, 1, 2]]])
        
        >>> b = np.array([[1, 2], [3, 4]])
        >>> np.tile(b, 2)
        array([[1, 2, 1, 2],
               [3, 4, 3, 4]])
        >>> np.tile(b, (2, 1))
        array([[1, 2],
               [3, 4],
               [1, 2],
               [3, 4]])
        
        >>> c = np.array([1,2,3,4])
        >>> np.tile(c,(4,1))
        array([[1, 2, 3, 4],
               [1, 2, 3, 4],
               [1, 2, 3, 4],
               [1, 2, 3, 4]])
    

    np.tile(A,reps)就是根据reps的值,将array A在某些维度上进行复制,而产生新的array.
    如果reps的长度等于A.ndim,则根据reps的值对A相应的维度进行复制。如果不相等,最后的结果取A.ndim和reps长度的较大值的维度;
    如果A.ndim>len(reps),则先对reps前置若干个'1',使reps长度与ndim匹配,然后再进行各维度的复制;
    如果A.ndim<len(reps), 则先对A的维度前置若干个'1',使两者匹配,再进行各维度复制。

    • A的维度与reps长度相等:
    a=np.array([1,2,3])
    
    a.ndim
    
    1
    
    np.tile(a,2)# 可见,将a在自身的维度下复制2次。
    
    array([1, 2, 3, 1, 2, 3])
    
    b=np.array([[1,2,3],
               [4,5,6]])
    
    np.tile(b,(2,3))
    
    array([[1, 2, 3, 1, 2, 3, 1, 2, 3],
           [4, 5, 6, 4, 5, 6, 4, 5, 6],
           [1, 2, 3, 1, 2, 3, 1, 2, 3],
           [4, 5, 6, 4, 5, 6, 4, 5, 6]])
    

    可见,是先将最后一维在自己的维度复制3遍,然后在第一维复制2遍

    • A的维度与reps长度不相等

    A.ndim>len(reps)

    np.tile(b,2)
    
    array([[1, 2, 3, 1, 2, 3],
           [4, 5, 6, 4, 5, 6]])
    

    将reps扩展成与b维度一样的即,等效于np.tile(b,(1,2))!

    np.tile(b,(1,2)) #在最后一维复制2遍
    
    array([[1, 2, 3, 1, 2, 3],
           [4, 5, 6, 4, 5, 6]])
    

    A.ndim<len(reps)

    np.tile(b,(3,2,2))
    
    array([[[1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6],
            [1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6]],
    
           [[1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6],
            [1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6]],
    
           [[1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6],
            [1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6]]])
    

    将A扩展成与b维度一样的,即A先升维为(1,2,3)

    bb=b[np.newaxis,:]
    
    bb
    
    array([[[1, 2, 3],
            [4, 5, 6]]])
    
    bb.shape
    
    (1, 2, 3)
    
    np.tile(bb,(3,2,2))
    
    array([[[1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6],
            [1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6]],
    
           [[1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6],
            [1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6]],
    
           [[1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6],
            [1, 2, 3, 1, 2, 3],
            [4, 5, 6, 4, 5, 6]]])
    

    即先在最后一维复制2次,然后倒数第二维复制2次,最后第一维复制3次。

    ##### 愿你一寸一寸地攻城略地,一点一点地焕然一新 #####
  • 相关阅读:
    合并果子
    在线最小值问题
    沙盒机制(sandBox)
    简单地址簿?
    浅拷贝、深拷贝
    NSFileManager、NSFileHandle
    NSDate、NSCalendar、NSDateFormatter
    归档
    类目、延展、协议
    动态类型
  • 原文地址:https://www.cnblogs.com/johnyang/p/13785321.html
Copyright © 2011-2022 走看看