zoukankan      html  css  js  c++  java
  • 卡耐基梅隆大学(CMU)元学习和元强化学习课程 | Elements of Meta-Learning

    在这里插入图片描述
    Goals for the lecture:

    Introduction & overview of the key methods and developments.
    [Good starting point for you to start reading and understanding papers!]

    原文链接:


    在这里插入图片描述
    @

    Probabilistic Graphical Models | Elements of Meta-Learning

    01 Intro to Meta-Learning

    在这里插入图片描述

    Motivation and some examples

    When is standard machine learning not enough?
    Standard ML finally works for well-defined, stationary tasks.
    在这里插入图片描述
    But how about the complex dynamic world, heterogeneous data from people and the interactive robotic systems?
    在这里插入图片描述

    General formulation and probabilistic view

    What is meta-learning?
    Standard learning: Given a distribution over examples (single task), learn a function that minimizes the loss:
    在这里插入图片描述
    Learning-to-learn: Given a distribution over tasks, output an adaptation rule that can be used at test time to generalize from a task description
    在这里插入图片描述

    A Toy Example: Few-shot Image Classification
    在这里插入图片描述
    在这里插入图片描述

    Other (practical) Examples of Few-shot Learning
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    Gradient-based and other types of meta-learning

    Model-agnostic Meta-learning (MAML) 与模型无关的元学习

    • Start with a common model initialization ( heta)
    • Given a new task (T_i) , adapt the model using a gradient step:
      在这里插入图片描述
    • Meta-training is learning a shared initialization for all tasks:
      在这里插入图片描述
      在这里插入图片描述

    Does MAML Work?
    在这里插入图片描述

    MAML from a Probabilistic Standpoint
    Training points: 在这里插入图片描述
    testing points:在这里插入图片描述
    MAML with log-likelihood loss对数似然损失:
    在这里插入图片描述
    在这里插入图片描述

    One More Example: One-shot Imitation Learning 模仿学习
    在这里插入图片描述

    Prototype-based Meta-learning
    在这里插入图片描述
    Prototypes:
    在这里插入图片描述
    Predictive distribution:
    在这里插入图片描述
    Does Prototype-based Meta-learning Work?
    在这里插入图片描述

    Rapid Learning or Feature Reuse 特征重用
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    Neural processes and relation of meta-learning to GPs

    Drawing parallels between meta-learning and GPs
    In few-shot learning:

    • Learn to identify functions that generated the data from just a few examples.
    • The function class and the adaptation rule encapsulate our prior knowledge.

    Recall Gaussian Processes (GPs): 高斯过程

    • Given a few (x, y) pairs, we can compute the predictive mean and variance.
    • Our prior knowledge is encapsulated in the kernel function.

    在这里插入图片描述

    Conditional Neural Processes 条件神经过程
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    On software packages for meta-learning
    A lot of research code releases (code is fragile and sometimes broken)
    A few notable libraries that implement a few specific methods:

    在这里插入图片描述
    Takeaways

    • Many real-world scenarios require building adaptive systems and cannot be solved using “learn-once” standard ML approach.
    • Learning-to-learn (or meta-learning) attempts extend ML to rich multitask scenarios—instead of learning a function, learn a learning algorithm.
    • Two families of widely popular methods:
      • Gradient-based meta-learning (MAML and such)
      • Prototype-based meta-learning (Protonets, Neural Processes, ...)
      • Many hybrids, extensions, improvements (CAIVA, MetaSGD, ...)
    • Is it about adaptation or learning good representations? Still unclear and depends on the task; having good representations might be enough.
    • Meta-learning can be used as a mechanism for causal discovery.因果发现 (See Bengio et al., 2019.)

    02 Elements of Meta-RL

    What is meta-RL and why does it make sense?

    Recall the definition of learning-to-learn
    Standard learning: Given a distribution over examples (single task), learn a function that minimizes the loss:
    在这里插入图片描述
    Learning-to-learn: Given a distribution over tasks, output an adaptation rule that can be used at test time to generalize from a task description
    在这里插入图片描述
    Meta reinforcement learning (RL): Given a distribution over environments, train a policy update rule that can solve new environments given only limited or no initial experience.
    在这里插入图片描述

    Meta-learning for RL
    在这里插入图片描述

    On-policy and off-policy meta-RL

    On-policy RL: Quick Recap 符合策略的RL:快速回顾
    在这里插入图片描述
    REINFORCE algorithm:
    在这里插入图片描述

    On-policy Meta-RL: MAML (again!)

    • Start with a common policy initialization ( heta)
    • Given a new task (T_i) , collect data using initial policy, then adapt using a gradient step:
      在这里插入图片描述
    • Meta-training is learning a shared initialization for all tasks:
      在这里插入图片描述
      在这里插入图片描述
      Adaptation as Inference 适应推理
      Treat policy parameters, tasks, and all trajectories as random variables随机变量
      在这里插入图片描述
      meta-learning = learning a prior and adaptation = inference
      在这里插入图片描述
      Off-policy meta-RL: PEARL
      在这里插入图片描述
      在这里插入图片描述

    Key points:

    • Infer latent representations z of each task from the trajectory data.
    • The inference networkq is decoupled from the policy, which enables off-policy learning.
    • All objectives involve the inference and policy networks.
      在这里插入图片描述

    Adaptation in nonstationary environments 不稳定环境
    Classical few-shot learning setup:

    • The tasks are i.i.d. samples from some underlying distribution.
    • Given a new task, we get to interact with it before adapting.
    • What if we are in a nonstationary environment (i.e. changing over time)? Can we still use meta-learning?
      在这里插入图片描述
      Example: adaptation to a learning opponent
      在这里插入图片描述Each new round is a new task. Nonstationary environment is a sequence of tasks.

    Continuous adaptation setup:

    • The tasks are sequentially dependent.
    • meta-learn to exploit dependencies
      在这里插入图片描述

    Continuous adaptation

    Treat policy parameters, tasks, and all trajectories as random variables
    在这里插入图片描述

    RoboSumo: a multiagent competitive env
    an agent competes vs. an opponent, the opponent’s behavior changes over time
    在这里插入图片描述

    Takeaways

    • Learning-to-learn (or meta-learning) setup is particularly suitable for multi-task reinforcement learning
    • Both on-policy and off-policy RL can be “upgraded” to meta-RL:
      • On-policy meta-RL is directly enabled by MAML
      • Decoupling task inference and policy learning enables off-policy methods
    • Is it about fast adaptation or learning good multitask representations? (See discussion in Meta-Q-Learning: https://arxiv.org/abs/1910.00125)
    • Probabilistic view of meta-learning allows to use meta-learning ideas beyond distributions of i.i.d. tasks, e.g., continuous adaptation.
    • Very active area of research.
  • 相关阅读:
    窗口的基本手势事件处理
    用户自定义手势,并识别
    安卓程序国际化,手机屏幕适配器
    排序:冒泡,快排,归并。
    哈夫曼树学习
    二叉树的学习。
    ArrayList和vector的区别
    关于try-catch-finally return 的面试题
    Java中的抽象和封装
    关于SelectedValue的众多解决方案
  • 原文地址:https://www.cnblogs.com/joselynzhao/p/12892696.html
Copyright © 2011-2022 走看看