zoukankan      html  css  js  c++  java
  • sicily 1029. Rabbit

    Description

    The rabbits have powerful reproduction ability. One pair of adult rabbits can give birth to one pair of kid rabbits every month. And after m months, the kid rabbits can become adult rabbits.
        As we all know, when m=2, the sequence of the number of pairs of rabbits in each month is called Fibonacci sequence. But when m<>2, the problem seems not so simple. You job is to calculate after d months, how many pairs of the rabbits are there if there is exactly one pair of adult rabbits initially. You may assume that none of the rabbits dies in this period.

    Input

    The input may have multiple test cases. In each test case, there is one line having two integers m(1<=m<=10), d(1<=d<=100), m is the number of months after which kid rabbits can become adult rabbits, and d is the number of months after which you should calculate the number of pairs of rabbits. The input will be terminated by m=d=0.

    Output

    You must print the number of pairs of rabbits after d months, one integer per line.

    跟之前作业的那题有点不一样,用long long也不够,必须写成大精度加法

    一开始WA,发现大精度加法写错了,应该先加进位再取模而不是先取模再加,改掉之后AC,用时0.03s

    View Code
     1 #include<stdio.h>
     2 #define MAX 101
     3 int rabbit[MAX][MAX] = {1};
     4 void generate( int m, int d );
     5 void add( int des, int a, int b );
     6 
     7 int main()
     8 {
     9     int m, d;
    10     
    11     while( scanf("%d %d", &m, &d) && m != 0 )
    12     {
    13         generate(m, d);
    14     }
    15     return 0;
    16 }
    17 
    18 void add( int des, int a, int b )
    19 {
    20     int i, temp, carry = 0;
    21     
    22     for ( i = 0; i < MAX; i++ )
    23     {
    24         temp = rabbit[a][i] + rabbit[b][i] + carry;
    25         rabbit[des][i] = temp % 10;
    26         carry = temp / 10;
    27     }
    28     
    29 }
    30 
    31 void generate( int m, int d )
    32 {
    33     int i, j;
    34     
    35     for ( i = 1; i <= d; i++ )
    36         for ( j = 0; j < MAX; j++ )
    37             rabbit[i][j] = 0;
    38     
    39     for ( i = 1; i <= d; i++ )
    40     {
    41         if ( i < m )
    42             add( i, i - 1, 0 );
    43         else
    44             add( i, i - 1, i - m );
    45     }
    46     
    47     i = MAX - 1;
    48     while( rabbit[d][i] == 0)
    49         i--;
    50     
    51     for( j = i; j >= 0; j-- )
    52         printf("%d", rabbit[d][j]);
    53     
    54     printf("\n");
    55 }
  • 相关阅读:
    BFS POJ 2251 Dungeon Master
    DFS POJ 1321 棋盘问题
    构造 Codeforces Round #275 (Div. 2) C. Diverse Permutation
    线段树+树状数组+贪心 HDOJ 5338 ZZX and Permutations
    快速幂取模 POJ 3761 bubble sort
    矩阵快速幂 POJ 3070 Fibonacci
    矩阵快速幂 POJ 3735 Training little cats
    DP+矩阵快速幂 HDOJ 5318 The Goddess Of The Moon
    L2-001. 紧急救援(PAT)~最短路应用
    ~psd面试 求最长回文序列 DP求解
  • 原文地址:https://www.cnblogs.com/joyeecheung/p/2870947.html
Copyright © 2011-2022 走看看