import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) sess = tf.Session() xs = tf.placeholder(shape=[None, 784], dtype=tf.float32) ys = tf.placeholder(shape=[None, 10], dtype=tf.float32) def add_layer(input_data, in_size, out_size, activation_func=None): Weights = tf.Variable(tf.random_normal(shape=[in_size, out_size])) biases = tf.Variable(tf.zeros(shape=[1, out_size]) + 0.1) W_plus_b = tf.matmul(input_data, Weights) + biases if activation_func is None: outputs = W_plus_b else: outputs = activation_func(W_plus_b) return outputs def compute_accuracy(v_xs, v_ys): global prediction y_pre = sess.run(prediction, feed_dict={xs: v_xs}) correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys}) return result prediction = add_layer(xs, 784, 10, activation_func=tf.nn.softmax) cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1])) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess.run(tf.global_variables_initializer()) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys}) if i % 50 == 0: print(compute_accuracy(mnist.test.images, mnist.test.labels))