zoukankan      html  css  js  c++  java
  • mysql5.7 代价模型浅析

    代价模型

    mysql 5.7.10代价计算相对之前的版本有5.7 代价模型浅析较大的改进。例如

    • 代价模型参数可以动态配置,可以适应不同的硬件
    • 区分考虑数据在内存和在磁盘中的代价
    • 代价精度提升为浮点型
    • jion计算时不仅要考虑condition,还要考虑condition上的filter,具体参见参数condition_fanout_filter

    5.7 在代价类型上分为io,cpu和memory, 5.7的代价模型还在完善中,memory的代价虽然已经收集了,但还没有没有计算在最终的代价中。
    5.7 在源码上对代价模型进行了大量重构,代价分为server层和engine层。server层主要是cpu的代价,而engine层主要是io的代价。
    5.7 引入了两个系统表mysql.server_cost和mysql.engine_cost来分别配置这两个层的代价。

    以下分析均基于mysql5.7.10

    server_cost

    • row_evaluate_cost (default 0.2) 计算符合条件的行的代价,行数越多,此项代价越大
    • memory_temptable_create_cost (default 2.0) 内存临时表的创建代价
    • memory_temptable_row_cost (default 0.2) 内存临时表的行代价
    • key_compare_cost (default 0.1) 键比较的代价,例如排序
    • disk_temptable_create_cost (default 40.0) 内部myisam或innodb临时表的创建代价
    • disk_temptable_row_cost (default 1.0)
      内部myisam或innodb临时表的行代价

      由上可以看出创建临时表的代价是很高的,尤其是内部的myisam或innodb临时表。

    engine_cost

    • io_block_read_cost (default 1.0) 从磁盘读数据的代价,对innodb来说,表示从磁盘读一个page的代价
    • memory_block_read_cost (default 1.0)
      从内存读数据的代价,对innodb来说,表示从buffer pool读一个page的代价

      目前io_block_read_cost和memory_block_read_cost默认值均为1,实际生产中建议酌情调大memory_block_read_cost,特别是对普通硬盘的场景。

    代价配置

    cost参数可以通过修改mysql.server_cost和mysql.engine_cost来实现。初始这两个表中的记录cost_value项均为NULL, 代价值都取上两节介绍的初始值。
    当修改cost_value为非NULL时,代价值按设定的值计算。修改方法如下:

    # 修改io_block_read_cost值为2
    UPDATE mysql.engine_cost
      SET cost_value = 2.0
      WHERE cost_name = 'io_block_read_cost';
    #FLUSH OPTIMIZER_COSTS 生效,只对新连接有效,老连接无效。
    FLUSH OPTIMIZER_COSTS;

    另外,在主备环境下,修改cost参数时主备都要修改。因为mysql.server_cost和mysql.engine_cost的更新不会参与复制。

    代价分析示例

    初始化数据

    create table t1(c1 int primary key, c2 int unique,c3 int) engine=innodb;
    
    let $loop=100;
    while($loop)
    {
      eval insert into t1(c1,c2,c3) values($loop, $loop+1, $loop+2);
      dec $loop;
    }
    
    set optimizer_trace = "enabled=on";

     cost参数都取默认值,以下示例中会用到row_evaluate_cost(0.2),io_block_read_cost(1.0),io_block_read_cost(1.0),memory_block_read_cost(1.0)

    • 示例1

    以下语句选择覆盖索引c2

    explain select c1,c2 from t1 where c2 > 10;
    id      select_type     table   partitions      type    possible_keys   key     key_len ref     rows    filtered        Extra
    1       SIMPLE  t1      NULL    range   c2      c2      5       NULL    91      100.00  Using where; Using index

    查看optimizer_trace, 可以看出全表扫描代价为23.1,通过c2上的索引扫描代价为19.309, 最后选择c2上的索引扫描。

     "rows_estimation": [
           {
             "table": "`t1`",
             "range_analysis": {
               "table_scan": {
                 "rows": 100,
                 "cost": 23.1
               },
               "potential_range_indexes": [
                 {
                   "index": "PRIMARY",
                   "usable": false,
                   "cause": "not_applicable"
                 },
                 {
                   "index": "c2",
                   "usable": true,
                   "key_parts": [
                     "c2"
                   ]
                 }
               ],
               "best_covering_index_scan": {
                 "index": "c2",
                 "cost": 21.109,
                 "chosen": true
               },
               "setup_range_conditions": [
               ],
               "group_index_range": {
                 "chosen": false,
                 "cause": "not_group_by_or_distinct"
               },
               "analyzing_range_alternatives": {
                 "range_scan_alternatives": [
                   {
                     "index": "c2",
                     "ranges": [
                       "10 < c2"
                     ],
                     "index_dives_for_eq_ranges": true,
                     "rowid_ordered": false,
                     "using_mrr": false,
                     "index_only": true,
                     "rows": 91,
                     "cost": 19.309,
                     "chosen": true
                   }
                 ],
                 "analyzing_roworder_intersect": {
                   "usable": false,
                   "cause": "too_few_roworder_scans"
                 }
               },
               "chosen_range_access_summary": {
                 "range_access_plan": {
                   "type": "range_scan",
                   "index": "c2",
                   "rows": 91,
                   "ranges": [
                     "10 < c2"
                   ]
                 },
                 "rows_for_plan": 91,
                 "cost_for_plan": 19.309,
                 "chosen": true
               }
             }
           }
         ]
       },
       {
         "considered_execution_plans": [
           {
             "plan_prefix": [
             ],
             "table": "`t1`",
             "best_access_path": {
               "considered_access_paths": [
                 {
                   "rows_to_scan": 91,
                   "access_type": "range",
                   "range_details": {
                     "used_index": "c2"
                   },
                   "resulting_rows": 91,
                   "cost": 37.509,
                   "chosen": true
                 }
               ]
             },
             "condition_filtering_pct": 100,
             "rows_for_plan": 91,
             "cost_for_plan": 37.509,
             "chosen": true
           }
         ]

    全表扫描的代价23.1

    包括io和cpu的代价

    test_quick_select:
     double scan_time=                                                    
       cost_model->row_evaluate_cost(static_cast<double>(records)) + 1;   
     Cost_estimate cost_est= head->file->table_scan_cost();               
     cost_est.add_io(1.1);//这里加1.1应该是个调节值                                                
     cost_est.add_cpu(scan_time); 

    其中io代价table_scan_cost会根据buffer pool大小和索引大小来估算page in memory和in disk的比例,分别算出代价。

    handler::table_scan_cost()
      ha_innobase::scan_time()*table->cost_model()->page_read_cost(1.0);//1*1=1
      //其中scan_time计算数据所占page数,

    page_read_cost计算读取单个page的代价

     buffer_block_read_cost(pages_in_mem) + io_block_read_cost(pages_on_disk); 
    

    io代价为1+1.1=2.1

    cpu代价为row_evaluate_cost

    double row_evaluate_cost(double rows) const
    {
      DBUG_ASSERT(m_initialized);
      DBUG_ASSERT(rows >= 0.0);
    
      return rows * m_server_cost_constants->row_evaluate_cost(); // 100 * 0.2(row_evaluate_cost)=20;
    }

    cpu代价为20+1=21;

    最终代价为2.1+21=23.1

    c2索引扫描代价19.309

    同样也分为io和cpu代价

    multi_range_read_info_const:
    
      *cost= index_scan_cost(keyno, static_cast<double>(n_ranges),
                              static_cast<double>(total_rows));
      cost->add_cpu(cost_model->row_evaluate_cost(static_cast<double>(total_rows)) + 0.01);

    io代价 1.0987925356750823*1=1.0987925356750823

    index_scan_cost:
      const double io_cost= index_only_read_time(index, rows) *  //估算index占page个数  = 1.0987925356750823
      table->cost_model()->page_read_cost_index(index, 1.0);     //根据buffer pool大小和索引大小来估算page in memory和in disk的比例,计算读一个page的代价。 = 1

    cpu代价91*0.2+0.01=18.21

    cost->add_cpu(cost_model->row_evaluate_cost(
      static_cast<double>(total_rows)) + 0.01);  //这里根据过滤条件算出的total_rows为91

    最终代价1.0987925356750823+18.21=19.309

    • 示例2

    以下语句选择了全表扫描

    explain select * from t1 where c2 > 10;
    id      select_type     table   partitions      type    possible_keys   key     key_len ref     rows    filtered        Extra
    1       SIMPLE  t1      NULL    ALL     c2      NULL    NULL    NULL    100     91.00   Using where

    查看optimizer_trace, 可以看出全表扫描代价为23.1,通过c2上的索引扫描代价为110.21, 最后选择全表扫描。

     "rows_estimation": [
                  {
                    "table": "`t1`",
                    "range_analysis": {
                      "table_scan": {
                        "rows": 100,
                        "cost": 23.1
                      },
                      "potential_range_indexes": [
                        {
                          "index": "PRIMARY",
                          "usable": false,
                          "cause": "not_applicable"
                        },
                        {
                          "index": "c2",
                          "usable": true,
                          "key_parts": [
                            "c2"
                          ]
                        }
                      ],
                      "setup_range_conditions": [
                      ],
                      "group_index_range": {
                        "chosen": false,
                        "cause": "not_group_by_or_distinct"
                      },
                      "analyzing_range_alternatives": {
                        "range_scan_alternatives": [
                          {
                            "index": "c2",
                            "ranges": [
                              "10 < c2"
                            ],
                            "index_dives_for_eq_ranges": true,
                            "rowid_ordered": false,
                            "using_mrr": false,
                            "index_only": false,
                            "rows": 91,
                            "cost": 110.21,
                            "chosen": false,
                            "cause": "cost"
                          }
                        ],
                        "analyzing_roworder_intersect": {
                          "usable": false,
                          "cause": "too_few_roworder_scans"
                        }
                      }
                    }
                  }
                ]
              },
              {
                "considered_execution_plans": [
                  {
                    "plan_prefix": [
                    ],
                    "table": "`t1`",
                    "best_access_path": {
                      "considered_access_paths": [
                        {
                          "rows_to_scan": 100,
                          "access_type": "scan",
                          "resulting_rows": 91,
                          "cost": 21,
                          "chosen": true
                        }
                      ]
                    },
                    "condition_filtering_pct": 100,
                    "rows_for_plan": 91,
                    "cost_for_plan": 21,
                    "chosen": true
                  }
                ]
              },

    全表扫描代价23.1
    同上一节分析

    c2索引扫描代价为110.21
    上一节通过c2索引扫描代价为19.309,因为是覆盖索引不需要回表,所以代价较少。而此例是需要回表的。

    multi_range_read_info_const:
        *cost= read_cost(keyno, static_cast<double>(n_ranges),
                         static_cast<double>(total_rows));    
      cost->add_cpu(cost_model->row_evaluate_cost(            
        static_cast<double>(total_rows)) + 0.01);  

    io代价需回表

    read_cost: //92*1=92
      const double io_cost= read_time(index, static_cast<uint>(ranges)
                                    static_cast<ha_rows>(rows)) *
                                    table->cost_model()->page_read_cost(1.0);   
    
    read_time: //91+1=92
    virtual double read_time(uint index, uint ranges, ha_rows rows)
    { return rows2double(ranges+rows); }

    这里回表时计算代价为每行代价为1,默认认为回表时每行都对于聚集索引的一个page.

    io代价为92

    cpu代价为91*0.2+0.01=18.21

    cost->add_cpu(cost_model->row_evaluate_cost(            
        static_cast<double>(total_rows)) + 0.01);

    最后代价为92+18.21=110.21

    总结

    5.7 代价模型优化还在持续改进中,相信后续的版本会越来越好。代价的参数的配置需谨慎,需要大量的测试和验证。

  • 相关阅读:
    【iCore2双核心板视频教程】 AD模块(iM_AD_GP和iM_AD_SYNC)介绍及数据采集实验二
    【液晶模块系列基础视频】4.1.X-GUI图形界面库-画线画圆等函数简介
    【贴图】网友 snoopy 用《iHMI43 液晶模块》做的界面给大家看看
    【开放源代码】【谐波数据生成器】【上位机软件】(版本:0.00)
    【iCore2双核心板视频教程】 AD模块(iM_AD_GP和iM_AD_SYNC)介绍及数据采集实验一
    【新产品发布】【GK101 10MHz任意波发生器】
    【液晶模块系列基础视频】2.虚拟U盘
    【液晶模块系列基础视频】1.3.iM_TFT30模块简介
    【液晶模块系列基础视频】1.2.iM_RGB模块介绍
    【液晶模块系列基础视频】1.1.iHMI43模块介绍
  • 原文地址:https://www.cnblogs.com/justfortaste/p/5660568.html
Copyright © 2011-2022 走看看