zoukankan      html  css  js  c++  java
  • jzoj 6271. 2019.8.4【NOIP提高组A】锻造 (forging)

    Description

    详见OJ

    Solution

    这题看题目就知道是期望(DP)了。
    先刚了2h(DP)式,得到(f[i]=f[i-1]+f[i-2]+f[i-1]*(1-p)+...),然后不会化简,最后崩盘。
    正解也是设f[i]表示生成第i级的剑的期望费用。
    可以得到(f[i] = f[i - 1] + f[i - 2] + (1 - p) * (f[i] - f[i - 2]))
    解方程即可,得到:
    [f[i] = f[i - 2] + f[i - 1] * (k/c[i - 1])]((k)为题目所给的(k))
    要用逆元(考场逆元直接用成了(/(k!)),而需要的是(/k)。。。)
    [f[i] = f[i - 2] + f[i - 1] * k * ny[c[i - 1]] * jc[c[i - 1] - 1]]
    此题需要卡常!!!

    Code

    
    #include <cstdio>
    #include <algorithm>
    #define N 10000010
    #define ll long long
    #define mo 998244353
    #define fo(x, a, b) for (register int x = a; x <= b; x++)
    #define fd(x, a, b) for (register int x = a; x >= b; x--)
    using namespace std;
    const int maxn = 10000000;
    int n, A, bx, by, cx, cy, p, k;
    int b[N], c[N], f[N], jc[N], ny[N];
    
    inline int read()
    {
        int x = 0; char c = getchar();
        while (c < '0' || c > '9') c = getchar();
        while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
        return x;
    }
    
    int ksm(int x, int y)
    {
        int s = 1;
        while (y)
        {
            if (y & 1) s = (ll)s * x % mo;
            x = (ll)x * x % mo; y >>= 1;
        }
        return s;
    }
    
    void ycl()
    {
        jc[0] = jc[1] = 1;
        fo(i, 2, maxn) jc[i] = (ll)jc[i - 1] * i % mo;
        ny[maxn] = ksm(jc[maxn], mo - 2);
        fd(i, maxn - 1, 1) ny[i] = (ll)ny[i + 1] * (i + 1) % mo;
    }
    
    int main()
    {
        freopen("forging.in", "r", stdin);
        freopen("forging.out", "w", stdout);
        n = read(), A = read();
        if (n == 0) {printf("%d
    ", A); return 0;} ycl();
        bx = read(), by = read(), cx = read(), cy = read(), p = read();
        b[0] = by + 1, c[0] = cy + 1;
        fo(i, 1, n - 1)
        {
            b[i] = ((ll)b[i - 1] * bx + by) % p + 1;
            c[i] = ((ll)c[i - 1] * cx + cy) % p + 1;
        }
        f[0] = A; k = std::min(c[0], b[0]);
        f[1] = (f[0] + (ll)f[0] * c[0] % mo * ny[k] % mo * jc[k - 1] % mo) % mo;
        fo(i, 2, n)
        {
            k = std::min(c[i - 1], b[i - 2]);
            f[i] = (f[i - 2] + (ll)f[i - 1] * c[i - 1] % mo * ny[k] % mo * jc[k - 1] % mo) % mo;
        }
        printf("%d
    ", f[n]);
        return 0;
    }
    转载需注明出处。
  • 相关阅读:
    实现主从关系Form中汇总行金额/数量
    Custom.pll : 客制化菜单
    XML publisher 填充空白行数
    PLSQL提交带有模板的报表的方法
    使用Form个性化修改标准Form的LOV2
    在开发Form表单中的三种查询方法
    S3C2440 I2C实现
    NBOOT 基于VS2005的编程与编译(一)
    WINCE 6.0 调大image config.bib
    少用的defined,注意不是define
  • 原文地址:https://www.cnblogs.com/jz929/p/11817484.html
Copyright © 2011-2022 走看看