zoukankan      html  css  js  c++  java
  • python复杂网络分析库NetworkX

    NetworkX是一个用Python语言开发的图论与复杂网络建模工具,内置了常用的图与复杂网络分析算法,可以方便的进行复杂网络数据分析、仿真建模等工作。networkx支持创建简单无向图、有向图和多重图(multigraph);内置许多标准的图论算法,节点可为任意数据;支持任意的边值维度,功能丰富,简单易用。

    引入模块

    import networkx as nx
    print nx

    无向图

    例1:

    #!-*- coding:utf8-*-
     
    import networkx as nx
    import matplotlib.pyplot as plt
    
    G = nx.Graph()                 #建立一个空的无向图G
    G.add_node(1)                  #添加一个节点1
    G.add_edge(2,3)                #添加一条边2-3(隐含着添加了两个节点2、3)
    G.add_edge(3,2)                #对于无向图,边3-2与边2-3被认为是一条边
    print "nodes:", G.nodes()      #输出全部的节点: [1, 2, 3]
    print "edges:", G.edges()      #输出全部的边:[(2, 3)]
    print "number of edges:", G.number_of_edges()   #输出边的数量:1
    nx.draw(G)
    plt.savefig("wuxiangtu.png")
    plt.show()

    输出

    nodes: [1, 2, 3]
    edges: [(2, 3)]
    number of edges: 1

    例2:

    #-*- coding:utf8-*-
     
    import networkx as nx
    import matplotlib.pyplot as plt
    G = nx.DiGraph()
    G.add_node(1)
    G.add_node(2)                  #加点
    G.add_nodes_from([3,4,5,6])    #加点集合
    G.add_cycle([1,2,3,4])         #加环
    G.add_edge(1,3)     
    G.add_edges_from([(3,5),(3,6),(6,7)])  #加边集合
    nx.draw(G)
    plt.savefig("youxiangtu.png")
    plt.show()

    有向图

    例1:

    #!-*- coding:utf8-*-
     
    import networkx as nx
    import matplotlib.pyplot as plt
    
    G = nx.DiGraph()
    G.add_node(1)
    G.add_node(2)
    G.add_nodes_from([3,4,5,6])
    G.add_cycle([1,2,3,4])
    G.add_edge(1,3)
    G.add_edges_from([(3,5),(3,6),(6,7)])
    nx.draw(G)
    plt.savefig("youxiangtu.png")
    plt.show()

    :有向图和无向图可以互相转换,使用函数:

    • Graph.to_undirected()
    • Graph.to_directed()

    例2,例子中把有向图转化为无向图:

    #!-*- coding:utf8-*-
     
    import networkx as nx
    import matplotlib.pyplot as plt
    
    G = nx.DiGraph()
    G.add_node(1)
    G.add_node(2)
    G.add_nodes_from([3,4,5,6])
    G.add_cycle([1,2,3,4])
    G.add_edge(1,3)
    G.add_edges_from([(3,5),(3,6),(6,7)])
    G = G.to_undirected()
    nx.draw(G)
    plt.savefig("wuxiangtu.png")
    plt.show()

    注意区分以下2例

    例3-1

    #-*- coding:utf8-*-
    
    import networkx as nx
    import matplotlib.pyplot as plt
    
    G = nx.DiGraph()
    
    road_nodes = {'a': 1, 'b': 2, 'c': 3}
    #road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}}
    road_edges = [('a', 'b'), ('b', 'c')]
    
    G.add_nodes_from(road_nodes.iteritems())
    G.add_edges_from(road_edges)
    
    nx.draw(G)
    plt.savefig("youxiangtu.png")
    plt.show()

    例3-2

    #-*- coding:utf8-*-
    
    import networkx as nx
    import matplotlib.pyplot as plt
    
    G = nx.DiGraph()
    
    #road_nodes = {'a': 1, 'b': 2, 'c': 3}
    road_nodes = {'a':{1:1}, 'b':{2:2}, 'c':{3:3}}
    road_edges = [('a', 'b'), ('b', 'c')]
    
    G.add_nodes_from(road_nodes.iteritems())
    G.add_edges_from(road_edges)
    
    nx.draw(G)
    plt.savefig("youxiangtu.png")
    plt.show()

    加权图

    有向图和无向图都可以给边赋予权重,用到的方法是add_weighted_edges_from,它接受1个或多个三元组[u,v,w]作为参数,其中u是起点,v是终点,w是权重。

    例1:

    #!-*- coding:utf8-*-
     
    import networkx as nx
    import matplotlib.pyplot as plt
    G = nx.Graph()                                        #建立一个空的无向图G
    G.add_edge(2,3)                                     #添加一条边2-3(隐含着添加了两个节点2、3)
    G.add_weighted_edges_from([(3, 4, 3.5),(3, 5, 7.0)])                                     #对于无向图,边3-2与边2-3被认为是一条边
    
    
    print G.get_edge_data(2, 3)
    print G.get_edge_data(3, 4)
    print G.get_edge_data(3, 5)
    
    nx.draw(G)
    plt.savefig("wuxiangtu.png")
    plt.show()

    输出

    {}
    {'weight': 3.5}
    {'weight': 7.0}

    经典图论算法计算

    计算1:求无向图的任意两点间的最短路径

    # -*- coding: cp936 -*-
    import networkx as nx
    import matplotlib.pyplot as plt
     
    #计算1:求无向图的任意两点间的最短路径
    G = nx.Graph()
    G.add_edges_from([(1,2),(1,3),(1,4),(1,5),(4,5),(4,6),(5,6)])
    path = nx.all_pairs_shortest_path(G)
    print path[1]

    计算2:找图中两个点的最短路径

    import networkx as nx
    G=nx.Graph()
    G.add_nodes_from([1,2,3,4])
    G.add_edge(1,2)
    G.add_edge(3,4)
    try:
        n=nx.shortest_path_length(G,1,4)
        print n
    except nx.NetworkXNoPath:
        print 'No path'

    强连通、弱连通

    • 强连通:有向图中任意两点v1、v2间存在v1到v2的路径(path)及v2到v1的路径。
    • 弱联通:将有向图的所有的有向边替换为无向边,所得到的图称为原图的基图。如果一个有向图的基图是连通图,则有向图是弱连通图。

    距离

    例1:弱连通

    #-*- coding:utf8-*-
     
    import networkx as nx
    import matplotlib.pyplot as plt
    #G = nx.path_graph(4, create_using=nx.Graph())
    #0 1 2 3
    G = nx.path_graph(4, create_using=nx.DiGraph())    #默认生成节点0 1 2 3,生成有向变0->1,1->2,2->3
    G.add_path([7, 8, 3])  #生成有向边:7->8->3
    
    for c in nx.weakly_connected_components(G):
        print c
    
    print [len(c) for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True)]
    
    nx.draw(G)
    plt.savefig("youxiangtu.png")
    plt.show()

    执行结果

    set([0, 1, 2, 3, 7, 8])
    [6]

    例2:强连通

    #-*- coding:utf8-*-
     
    import networkx as nx
    import matplotlib.pyplot as plt
    #G = nx.path_graph(4, create_using=nx.Graph())
    #0 1 2 3
    G = nx.path_graph(4, create_using=nx.DiGraph())
    G.add_path([3, 8, 1])
    
    #for c in nx.strongly_connected_components(G):
    #    print c
    #
    #print [len(c) for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)]
    
    
    con = nx.strongly_connected_components(G)
    print con
    print type(con)
    print list(con)
    
    
    nx.draw(G)
    plt.savefig("youxiangtu.png")
    plt.show()

    执行结果

    <generator object strongly_connected_components at 0x0000000008AA1D80>
    <type 'generator'>
    [set([8, 1, 2, 3]), set([0])]

    子图

    #-*- coding:utf8-*-
     
    import networkx as nx
    import matplotlib.pyplot as plt
    G = nx.DiGraph()
    G.add_path([5, 6, 7, 8])
    sub_graph = G.subgraph([5, 6, 8])
    #sub_graph = G.subgraph((5, 6, 8))  #ok  一样
    
    nx.draw(sub_graph)
    plt.savefig("youxiangtu.png")
    plt.show()

    条件过滤

    #原图

    #-*- coding:utf8-*-
    
    import networkx as nx
    import matplotlib.pyplot as plt
    G = nx.DiGraph()
    
    
    road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}}
    road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')]
    
    G.add_nodes_from(road_nodes)
    G.add_edges_from(road_edges)
    
    
    nx.draw(G)
    plt.savefig("youxiangtu.png")
    plt.show()

    #过滤函数

    #-*- coding:utf8-*-
    
    import networkx as nx
    import matplotlib.pyplot as plt
    G = nx.DiGraph()
    def flt_func_draw():
        flt_func = lambda d: d['id'] != 1
        return flt_func
    
    road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}, 'd':{'id':4}}
    road_edges = [('a', 'b'), ('a', 'c'), ('a', 'd'), ('b', 'd')]
    
    G.add_nodes_from(road_nodes.iteritems())
    G.add_edges_from(road_edges)
    
    flt_func = flt_func_draw()
    part_G = G.subgraph(n for n, d in G.nodes_iter(data=True) if flt_func(d))
    nx.draw(part_G)
    plt.savefig("youxiangtu.png")
    plt.show()

    pred,succ

    #-*- coding:utf8-*-
    
    import networkx as nx
    import matplotlib.pyplot as plt
    G = nx.DiGraph()
    
    
    road_nodes = {'a':{'id':1}, 'b':{'id':1}, 'c':{'id':3}}
    road_edges = [('a', 'b'), ('a', 'c'), ('c', 'd')]
    
    G.add_nodes_from(road_nodes.iteritems())
    G.add_edges_from(road_edges)
    
    print G.nodes()
    print G.edges()
    
    print "a's pred ", G.pred['a']
    print "b's pred ", G.pred['b']
    print "c's pred ", G.pred['c']
    print "d's pred ", G.pred['d']
    
    print "a's succ ", G.succ['a']
    print "b's succ ", G.succ['b']
    print "c's succ ", G.succ['c']
    print "d's succ ", G.succ['d']
    
    nx.draw(G)
    plt.savefig("wuxiangtu.png")
    plt.draw()

    结果

    ['a', 'c', 'b', 'd']
    [('a', 'c'), ('a', 'b'), ('c', 'd')]
    
    a's pred  {}
    b's pred  {'a': {}}
    c's pred  {'a': {}}
    d's pred  {'c': {}}
    
    a's succ  {'c': {}, 'b': {}}
    b's succ  {}
    c's succ  {'d': {}}
    d's succ  {}
    

      

  • 相关阅读:
    对list集合中的对象进行排序(转载)
    关键字的作用
    CocoaPods的 安装 /卸载/升级
    block基本使用和底层
    程序启动 - 类调用的方法
    成员变量修饰词的作用
    宏(define)与常量(const)
    iOS
    监听网络状态
    nil、Nil、NULL与NSNull的区别及应用
  • 原文地址:https://www.cnblogs.com/kaituorensheng/p/5423131.html
Copyright © 2011-2022 走看看