zoukankan      html  css  js  c++  java
  • Poj 2255 Tree Recovery

    Description

    Little Valentine liked playing with binary trees very much. Her favorite game was constructing randomly looking binary trees with capital letters in the nodes. 
    This is an example of one of her creations: 
                                                   D
    
                                                  / 
    
                                                 /   
    
                                                B     E
    
                                               /      
    
                                              /        
    
                                             A     C     G
    
                                                        /
    
                                                       /
    
                                                      F
    
    

    To record her trees for future generations, she wrote down two strings for each tree: a preorder traversal (root, left subtree, right subtree) and an inorder traversal (left subtree, root, right subtree). For the tree drawn above the preorder traversal is DBACEGF and the inorder traversal is ABCDEFG. 
    She thought that such a pair of strings would give enough information to reconstruct the tree later (but she never tried it). 

    Now, years later, looking again at the strings, she realized that reconstructing the trees was indeed possible, but only because she never had used the same letter twice in the same tree. 
    However, doing the reconstruction by hand, soon turned out to be tedious. 
    So now she asks you to write a program that does the job for her! 

    Input

    The input will contain one or more test cases. 
    Each test case consists of one line containing two strings preord and inord, representing the preorder traversal and inorder traversal of a binary tree. Both strings consist of unique capital letters. (Thus they are not longer than 26 characters.) 
    Input is terminated by end of file. 

    Output

    For each test case, recover Valentine's binary tree and print one line containing the tree's postorder traversal (left subtree, right subtree, root).

    Sample Input

    DBACEGF ABCDEFG
    BCAD CBAD
    

    Sample Output

    ACBFGED
    CDAB
    题意:已知先序和中序,求后序;;;
    参考代码:https://blog.csdn.net/liuke19950717/article/details/51291799

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int maxn=1005;
    char a[maxn],b[maxn];
    int x[maxn];//辅助数组
    void dfs(int la,int ra,int lb,int rb)
    {
        int i=x[a[la]-'A'];//定位节点的位置 
        int j=i-lb;//当前节点的左子树的字符长度 
        int k=rb-i;//当前节点的右子树的字符长度 
        if(j)
        {
            dfs(la+1,la+j,lb,i-1);//递归左子树
        }
        if(k)
        {
            dfs(la+j+1,ra,i+1,rb);//递归右子树
        }
        printf("%c",a[la]);//输出的次序就是后续遍历的结果 
    }
    int main()
    {
        while(~scanf("%s%s",a,b))
        {
            int len=strlen(a);
            for(int i=0;i<len;++i)
            {
                x[b[i]-'A']=i;
                //数组里保存中序的每个字母的下标 
            }
            dfs(0,len-1,0,len-1);
            printf("
    ");
        }
        return 0;
    }

    模仿大佬:

     1 #include<iostream>
     2 #include<string>
     3 #include<map>
     4 #include<algorithm>
     5 using namespace std;
     6 map<char, int > mp;
     7 string stra, strb;
     8 void dfs(int a, int b, int c, int d)
     9 {
    10     int i = mp[stra[a]];
    11     int j = i - c;
    12     int k = d - i;
    13     if (j)
    14     {
    15         dfs(a + 1, a + j, c, i - 1);
    16     }
    17     if (k)
    18     {
    19         dfs(a + j + 1, b, i + 1, d);
    20     }
    21     cout << stra[a];
    22 }
    23 int main()
    24 {
    25     while (cin >> stra >> strb)
    26     {
    27         int len = stra.length();
    28         mp.clear();
    29         for (int i = 0; i < len; i++)
    30             mp[strb[i]] = i;
    31         dfs(0, len - 1, 0, len - 1);
    32         cout << endl;
    33     }
    34     return 0;
    35 }

    //忧伤,原来二叉树的遍历还可以这么用,弄了两天的时间来弄懂别人代码的意思,,痛苦,不过收获也是蛮大的

  • 相关阅读:
    crawler碎碎念4 关于python requests、Beautiful Soup库、SQLlite的基本操作
    另类爬取表格数据
    如何选择kmeans中的k值——肘部法则–Elbow Method和轮廓系数–Silhouette Coefficient
    欧几里得距离
    数据导入+欧式距离计算+互信息计算
    轮廓系数
    肘部法则
    利用键值对进行排序的操作
    NMI计算
    彻底搞懂 C# 的 async/await
  • 原文地址:https://www.cnblogs.com/kangdong/p/9021320.html
Copyright © 2011-2022 走看看