zoukankan      html  css  js  c++  java
  • HDU p1294 Rooted Trees Problem 解题报告

    http://www.cnblogs.com/keam37/p/3639294.html keam所有 转载请注明出处

    Problem Description

    Give you two definitions tree and rooted tree. An undirected connected graph without cycles is called a tree. A tree is called rooted if it has a distinguished vertex r called the root. Your task is to make a program to calculate the number of rooted trees with n vertices denoted as Tn. The case n=5 is shown in Fig. 1.

    Input

    There are multiple cases in this problem and ended by the EOF. In each case, there is only one integer means n(1<=n<=40) .

    Output

    For each test case, there is only one integer means Tn.

    Sample Input

    1 2 5

    Sample Output

    1 1 9

    分析:

    题目比较容易读懂,就是求n个节点的树有多少种。

    按照递推的思路,f[n]=f[a1]*f[a2]*….f[ai];          其中 a1+a2+…+ai=n 且a1<=a2<=….<=ai

    很自然想到这是整数拆分的样式

    进一步考虑,对于n=a*sum[a]+b*sum[b]+c*sum[c]; sum[k]为一个拆分中k的个数

    仅对sum[a]个 a计算

    一个数a有f[a]种不同的拆分方式

    就相当于从(f[a]个不同a)中选取sum[a]个(可以重复) 的排列

    即 多重排列 C(f[a]+sum[a]-1,sum[a]);

    再依次计算b,c累加即可.

    参考代码

    #include<iostream>
    #define int64 __int64
    using namespace std;
    
    int64 f[41];
    int cnt[41] , n;
    //计算组合数
    int64 C(int64 n,int64 m){
             m=m<(n-m)?m:(n-m);
             int64 ans=1;
             for(int i=1;i<=m;i++)
                   ans=ans*(n-i+1)/i;
             return ans;
    }
    //拆分数并计算f[n]
    int dfs(int temp, int left){
             if( left == 0 ){
                   int64 ans = 1;
                   for(int i = 1; i<=n ;i ++){
                         if(cnt[i] == 0)   continue;
                         //计算并累加多重排列
                         ans = ans * C(f[i] + cnt[i] - 1 , cnt[i]);
                   }
                   f[n] += ans;
                   return 0;
             }
             for(int i=temp;i<=left;i++){
                   cnt[i]++;   dfs(i,left-i);
                   cnt[i]--;
             }
             return 0;
    }
    int main() {
             f[1] = f[2] = 1;
             for(n = 3; n <= 40 ; n++)    dfs(1,n-1);
             while(cin>>n)  cout<<f[n]<<endl;
             return 0;
    }
    
  • 相关阅读:
    程序Dog的大梦想
    图的存储结构
    c语言:函数的递归调用
    c语言:自增自减运算符的操作详解
    Shell 传递参数
    Shell 概述、截取字符操作等
    Python Falling back to the 'python' engine because the 'c' engine does not support regex separators
    Python IOError: [Errno 22] invalid mode ('r') 解决方法
    正则表达式 基础语法
    Hive 常用函数
  • 原文地址:https://www.cnblogs.com/keam37/p/3639294.html
Copyright © 2011-2022 走看看