zoukankan      html  css  js  c++  java
  • 15 手写数字识别-小数据集

    1.手写数字数据集

    • from sklearn.datasets import load_digits
    • digits = load_digits()
    digits = load_digits()
    X_data = digits.data.astype(np.float32)
    Y_data = digits.target.astype(np.float32).reshape(-1, 1)# 将Y_data变为一列

    2.图片数据预处理

    • x:归一化MinMaxScaler()
    • y:独热编码OneHotEncoder()或to_categorical
    • 训练集测试集划分
    • 张量结构
    scaler = MinMaxScaler()
    X_data = scaler.fit_transform(X_data) #归一化
    print("MinMaxScaler_trans_X_data:",X_data)
    Y = OneHotEncoder().fit_transform(Y_data).todense()# 对Y进行oe-hot编码,张量结构todense
    print("one-hot_Y:",Y)
    # 转换为图片的格式
    X = X_data.reshape(-1, 8, 8, 1)
    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0, stratify=Y)
    print('X_train.shape, X_test.shape, y_train.shape, y_test.shape:', X_train.shape, X_test.shape, y_train.shape, y_test.shape)

    3.设计卷积神经网络结构

    • 绘制模型结构图,并说明设计依据。
    model = Sequential()
    ks = (3, 3)  # 卷积核的大小
    input_shape = X_train.shape[1:]
    model.add(Conv2D(filters=16, kernel_size=ks, padding='same', input_shape=input_shape, activation='relu'))# 一层卷积,padding='same',保证卷积核大小,不够补零
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层1
    model.add(Dropout(0.25))# 防止过拟合,随机丢掉连接
    model.add(Conv2D(filters=32, kernel_size=ks, padding='same', activation='relu'))# 二层卷积
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层2
    model.add(Dropout(0.25))
    model.add(Conv2D(filters=64, kernel_size=ks, padding='same', activation='relu'))# 三层卷积
    model.add(Conv2D(filters=128, kernel_size=ks, padding='same', activation='relu'))# 四层卷积
    model.add(MaxPool2D(pool_size=(2, 2)))# 池化层3
    model.add(Dropout(0.25))
    model.add(Flatten())# 平坦层
    model.add(Dense(128, activation='relu'))# 全连接层
    model.add(Dropout(0.25))
    model.add(Dense(10, activation='softmax'))# 激活函数softmax
    model.summary()

    4.模型训练

    # 训练模型
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    train_history = model.fit(x=X_train, y=y_train, validation_split=0.2, batch_size=300, epochs=10, verbose=2)
    score = model.evaluate(X_test,y_test)
    score
    # 定义训练参数可视化
    def show_train_history(train_history, train, validation):
        plt.plot(train_history.history[train])
        plt.plot(train_history.history[validation])
        plt.title('Train History')
        plt.ylabel('train')
        plt.xlabel('epoch')
        plt.legend(['train', 'validation'], loc='upper left')
        plt.show()
    # 准确率
    show_train_history(train_history, 'accuracy', 'val_accuracy')
    # 损失率
    show_train_history(train_history, 'loss', 'val_loss')

    准确率:

    损失率:

    5.模型评价

    • model.evaluate()
    • 交叉表与交叉矩阵
    • pandas.crosstab
    • seaborn.heatmap
    # 模型评价
    score = model.evaluate(X_test, y_test)
    print('score:', score)
    # 预测值
    y_pred = model.predict_classes(X_test)
    print('y_pred:', y_pred[:10])
    # 交叉表与交叉矩阵
    y_test1 = np.argmax(y_test, axis=1).reshape(-1)
    y_true = np.array(y_test1)[0]
    # 交叉表查看预测数据与原数据对比
    pd.crosstab(y_true, y_pred, rownames=['true'], colnames=['predict'])
    
    # 交叉矩阵
    y_test1 = y_test1.tolist()[0]
    a = pd.crosstab(np.array(y_test1), y_pred, rownames=['Lables'], colnames=['Predict'])
    df = pd.DataFrame(a)
    sns.heatmap(df, annot=True, cmap="Purples", linewidths=0.2, linecolor='G')
    plt.show()

     

  • 相关阅读:
    jenkins构建时报错
    linux查看系统信息
    去掉jenkins的首页警告
    zabbix_server 报警
    OSI七层模型
    linux时间格式总结
    linux系统 lsof命令详解
    SharePoint 2010 用户权限和权限级别
    Error occurred in deployment step 'Activate Features': Unable to locate the workflow's association data.
    使用 Response.Write 向页面body中输出指定html
  • 原文地址:https://www.cnblogs.com/keshangming/p/13073713.html
Copyright © 2011-2022 走看看