Popular Cows
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 29908 | Accepted: 12131 |
Description
Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is
popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow.
popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow.
Input
* Line 1: Two space-separated integers, N and M
* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.
* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.
Output
* Line 1: A single integer that is the number of cows who are considered popular by every other cow.
Sample Input
3 3 1 2 2 1 2 3
Sample Output
1
Hint
Cow 3 is the only cow of high popularity.
Source
题解
tarjan一直没学会,今天写了道入门题。主要思路是用tarjan()求出强连通分量,记录每一个强连通分量的出度,出度为0的就是大家都认可的popular cow。在数组问题上卡了很久,后来发现u[i],v[i]要开5*10100才ac。
15701878
ksq2013 | 2186 | Accepted | 1304K | 94MS | C++ | 1969B | 2016-07-11 13:36:28 |
#include<cstdio> #include<cstring> #include<iostream> #define M 10100 using namespace std; int n,m,u[M*5],v[M*5],first[M*5],mnext[M*5],ans[M],outdu[M]; int dfs_clock,scc_cnt,stack_count,my_stack[M*5],pre[M],sccno[M],lowlink[M]; void Init() { memset(first,-1,sizeof(first)); memset(mnext,0,sizeof(mnext)); memset(my_stack,0,sizeof(my_stack)); memset(lowlink,0,sizeof(lowlink)); memset(sccno,0,sizeof(sccno)); memset(pre,0,sizeof(pre)); memset(ans,0,sizeof(ans)); memset(outdu,0,sizeof(outdu)); } void Link() { for(int i=1;i<=m;i++){ scanf("%d%d",&u[i],&v[i]); mnext[i]=first[u[i]]; first[u[i]]=i; } } void dfs(int ux) { pre[ux]=lowlink[ux]=++dfs_clock; my_stack[++stack_count]=ux; int vx; for(int i=first[ux];i!=-1;i=mnext[i]){ vx=v[i]; if(!pre[vx]){ dfs(vx); lowlink[ux]=min(lowlink[ux],lowlink[vx]); } else if(!sccno[vx]) lowlink[ux]=min(lowlink[ux],pre[vx]); } if(lowlink[ux]==pre[ux]){ scc_cnt++; int tmp=0; do{ tmp++; vx=my_stack[stack_count--]; sccno[vx]=scc_cnt; }while(vx!=ux); ans[scc_cnt]=tmp; } } void Tarjan() { dfs_clock=scc_cnt=stack_count=0; for(int i=1;i<=n;i++) if(!pre[i])dfs(i); } int main() { while(~scanf("%d%d",&n,&m)){ Init(); Link(); Tarjan(); if(scc_cnt==1){ printf("%d ",n); continue; } for(int i=1;i<=n;i++){ for(int j=first[i];j!=-1;j=mnext[j]){ int vx=v[j]; if(sccno[i]!=sccno[vx]) outdu[sccno[i]]++; } } int res=0; for(int i=1;i<=scc_cnt;i++) if(!outdu[i]){ if(!res)res=ans[i]; else {res=0;break;} } printf("%d ",res); } return 0; }