Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Solution
矩阵快速幂
#include<stdio.h> #include<string.h> #define md 10000 long long n; struct matrix{ long long x[2][2]; matrix operator*(matrix b){ matrix tmp; for(int i=0;i<2;i++) for(int j=0;j<2;j++){ tmp.x[i][j]=0; for(int k=0;k<2;k++) tmp.x[i][j]=(tmp.x[i][j]+x[i][k]*b.x[k][j])%md; } return tmp; } }root,counter; void matrix_qpow(long long p){ for(;p;counter=counter*counter,p>>=1) if(p&1) root=root*counter; } int main(){ scanf("%I64d",&n); while(n!=-1){ counter.x[0][0]=counter.x[0][1]=counter.x[1][0]=1; counter.x[1][1]=0; root.x[0][0]=root.x[1][1]=1; root.x[0][1]=root.x[1][0]=0; matrix_qpow(n); printf("%I64d ",root.x[0][1]); scanf("%I64d",&n); } return 0; }