zoukankan      html  css  js  c++  java
  • Maximum Product Subarray

    The maximum product of sub-arrays in $[1, n]$ can be divided by 3 cases:

    1. A[n] is the maximum product of all sub-arrays in [1, n].
    2. The array which has the maximum product is end by A[n].
    3. The array of maximum product is not including A[n]. 

    Thus the result can be expressed as

    result = max(case1, case2, case3)
    

    The second situation is not normal. If A[n] is positive, it can be got by prePositiveMax[n-1], if A[n] is negative, it can be got by preNegativeMin[n-1].

    So one brute method is: 

    prePositiveMax[n] = max(prePositiveMax[n-1]*A[n], preNegativeMin[n-1]*A[n], A[n]);
     
    preNegativeMin[n] = min(prePositiveMax[n-1]*A[n], preNegativeMin[n-1]*A[n], A[n]); 
    

    A more accurate method is:  

    We define pEnd[i]: the maximum non-negative product of subarray with A[i]

    We define nEnd[i]: the minimum non-positive product of subarray with A[i]

    In fact, here we use pEnd, nEnd intead of prePositiveMax, preNegativeMin, thus we have  

    if(A[i] > 0){     
        pEnd[i] = max(A[i], pEnd[i-1]*A[i]);     
        nEnd[i] = nEnd[i] * A[i]; 
    }else{     
        pEnd[i] = nEnd[i] * A[i];     
        nEnd[i] = min(A[i], pEnd[i]*A[i]); 
    }
    

    Then, we can simplify as  

    if(A[i] < 0) swap(pEnd, nEnd);
    
    pEnd = max(pEnd*A[i], A[i]); 
    nEnd = min(nEnd*A[i], A[i]);
    

    So we conclude the whole code 

    int maxProduct(int A[], int n) {
        if(1 == n) return A[0];
        
        int pEnd, nEnd, res;
        
        pEnd = nEnd = res = 0;
        
        for(int i = 0; i < n; ++i){
            if(A[i] < 0) swap(&pEnd, &nEnd);
            
            pEnd = max(pEnd*A[i], A[i]);
            nEnd = min(nEnd*A[i], A[i]);
            
            if(res < pEnd) res = pEnd; //from res = max(res, pEnd)
        }
        
        return res;
    }
    

    The complete code is:

    class Solution {
    private:
        int max(int a, int b){
            return a > b ? a : b;
        }
        int min(int a, int b){
            return a > b ? b : a;
        }
        void swap(int* a, int* b){
            *a = *a + *b;
            *b = *a - *b;
            *a = *a - *b;
        }
        
    public:
        int maxProduct(int A[], int n) {
            if(1 == n) return A[0];
            
            int pEnd, nEnd, res;
            
            pEnd = nEnd = res = 0;
            
            for(int i = 0; i < n; ++i){
                if(A[i] < 0) swap(&pEnd, &nEnd);
                
                pEnd = max(pEnd*A[i], A[i]);
                nEnd = min(nEnd*A[i], A[i]);
                
                if(res < pEnd) res = pEnd;
            }
            
            return res;
            
        }
    };
    
  • 相关阅读:
    OpenCV C++ 图像处理之自动色阶
    OpenCV Gamma校正 图像灰度变化
    ISP基本框架及算法介绍
    摄像机gamma校正
    OpenCV 图像增强(方法:伽马变换)
    Gamma的完全理解
    Photoshop中可选颜色是如何计算的?
    OpenCV实现Photoshop算法(九): 高反差保留
    OpenCV实现Photoshop算法(八): 可选颜色
    OpenCV实现Photoshop算法(七): 调整色相饱和度
  • 原文地址:https://www.cnblogs.com/kid551/p/4113020.html
Copyright © 2011-2022 走看看