4 Values whose Sum is 0
Time Limit: 15000MS | Memory Limit: 228000K | |
Total Submissions: 12224 | Accepted: 3426 | |
Case Time Limit: 5000MS |
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
Source
二分法
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #define maxn 4005 using namespace std; int a[maxn],b[maxn],c[maxn],d[maxn]; int s1[maxn*maxn],s2[maxn*maxn]; int cur; int ans; void binary() { ans=0; int i,j,k; for (i=0;i<cur;i++) { int now=s2[i]; int l=0,r=cur-1,mid; while (l<=r) { mid=(l+r)/2; if (now+s1[mid]==0) { ans++; break; } if (now+s1[mid]<0) l=mid+1; else r=mid-1; } if (now+s1[mid]==0) { int tt=1; while (mid+tt<cur&&now+s1[mid+tt]==0){tt++;ans++;} tt=1; while (mid-tt>=0&&now+s1[mid-tt]==0){tt++;ans++;} } } } int main() { int n; while (scanf("%d",&n)!=EOF) { int i,j,k; for (i=0;i<n;i++) { scanf("%d %d %d %d",&a[i],&b[i],&c[i],&d[i]); } cur=0; for (i=0;i<n;i++) { for (j=0;j<n;j++) { s1[cur]=a[i]+b[j]; s2[cur++]=c[i]+d[j]; } } //cout<<cur<<endl; sort(s1,s1+cur); binary(); printf("%d\n",ans); } return 0; }