原地址:http://www.wutianqi.com/?p=1890
这篇博客写的非常简洁易懂,其中各个函数的定义也很清晰,配合图表很容易理解这里只选取了 其中一部分(插不来图片)。
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。
初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist作必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其它顶点之间的最短路径长度。
#include <iostream> using namespace std; const int maxnum = 100; const int maxint = 999999; // 各数组都从下标1开始 int dist[maxnum]; // 表示当前点到源点的最短路径长度 int prev[maxnum]; // 记录当前点的前一个结点 int c[maxnum][maxnum]; // 记录图的两点间路径长度 int n, line; // 图的结点数和路径数 // n -- n nodes // v -- the source node // dist[] -- the distance from the ith node to the source node // prev[] -- the previous node of the ith node // c[][] -- every two nodes' distance void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum]) { bool s[maxnum]; // 判断是否已存入该点到S集合中 for(int i=1; i<=n; ++i) { dist[i] = c[v][i]; s[i] = 0; // 初始都未用过该点 if(dist[i] == maxint) prev[i] = 0; else prev[i] = v; } dist[v] = 0; s[v] = 1; // 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中 // 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度 // 注意是从第二个节点开始,第一个为源点 for(int i=2; i<=n; ++i) { int tmp = maxint; int u = v; // 找出当前未使用的点j的dist[j]最小值 for(int j=1; j<=n; ++j) if((!s[j]) && dist[j]<tmp) { u = j; // u保存当前邻接点中距离最小的点的号码 tmp = dist[j]; } s[u] = 1; // 表示u点已存入S集合中 // 更新dist for(int j=1; j<=n; ++j) if((!s[j]) && c[u][j]<maxint) { int newdist = dist[u] + c[u][j]; if(newdist < dist[j]) { dist[j] = newdist; prev[j] = u; } } } } // 查找从源点v到终点u的路径,并输出 void searchPath(int *prev,int v, int u) { int que[maxnum]; int tot = 1; que[tot] = u; tot++; int tmp = prev[u]; while(tmp != v) { que[tot] = tmp; tot++; tmp = prev[tmp]; } que[tot] = v; for(int i=tot; i>=1; --i) if(i != 1) cout << que[i] << " -> "; else cout << que[i] << endl; } int main() { freopen("input.txt", "r", stdin); // 各数组都从下标1开始 // 输入结点数 cin >> n; // 输入路径数 cin >> line; int p, q, len; // 输入p, q两点及其路径长度 // 初始化c[][]为maxint for(int i=1; i<=n; ++i) for(int j=1; j<=n; ++j) c[i][j] = maxint; for(int i=1; i<=line; ++i) { cin >> p >> q >> len; if(len < c[p][q]) // 有重边 { c[p][q] = len; // p指向q c[q][p] = len; // q指向p,这样表示无向图 } } for(int i=1; i<=n; ++i) dist[i] = maxint; for(int i=1; i<=n; ++i) { for(int j=1; j<=n; ++j) printf("%8d", c[i][j]); printf(" "); } Dijkstra(n, 1, dist, prev, c); // 最短路径长度 cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl; // 路径 cout << "源点到最后一个顶点的路径为: "; searchPath(prev, 1, n); }