zoukankan      html  css  js  c++  java
  • UMFPACK使用调用(三)

    在调用UMFPACK的过程中,只需要关心Ap Ai Ax的产生,通过Eigen库,先让矩阵A以稀疏矩阵格式存储(知道矩阵A的非零元素的分布),调用UMFPACK成功

    View Code
    //#include <Eigen/Eigen>
    #include <Eigen/Sparse>
    #include "umfpack.h"
    #include <Eigen/src/UmfPackSupport/UmfPackSupport.h>
    //注意:只有debug版本调试
    //参考资料:科学计算中的偏微分方程有限差分法 张文生 高等教育出版社
    //                4.7节 边界条件的处理 4.7.2 Neumann边界 P155
    // 主要是形成Eigen中要求的稀疏矩阵 而非一般的二维数组
    #include <iostream>
    #include <vector>
    
    using namespace Eigen;
    
    using namespace std;
    
    typedef Eigen::SparseMatrix<double> SpMat; // declares a column-major sparse matrix type of double
    
    int main()
    {
            
        /*---以下几行作为测试用---*/
        Eigen::Vector2d v1, v2;     //Eigen中的变量
        v1 << 5, 6;   //默认的向量为列向量
        cout  << "v1 = " << endl << v1 << endl;
        v2 << 4, 5 ;
        Matrix2d result = v1*v2.transpose();
        cout << "result: " << endl << result << endl;
        cout<<"test----"<<7%int(3.0)<<endl; //取余的结果显示
        cout<<"Please input the dimension of the Matrix----( N)!"<<endl;
        int N=90000;
    
        SpMat A(N,N); 
        typedef Eigen::Triplet<double> Tri;
        vector<Tri> coefficients;
        //coefficients.push_back(Tri(0,0,2.0));
        for(int i=0;i<sqrt( double(N) );i++)
            coefficients.push_back(Tri(i,i,1.0));
        for(int i=int(sqrt( double(N) ));i<N-sqrt( double(N) );i++)
        {
            if(i%int(sqrt( double(N) ))==0) //B矩阵中的首行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i+1,-2.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-1.0));
                coefficients.push_back(Tri(i,i+int(sqrt(double(N))),-1.0));
            }
            else if((i-(int(sqrt(double(N)))-1))%int(sqrt( double(N) ))==0) //B矩阵中的末行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i-1,-2.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-1.0));
                coefficients.push_back(Tri(i,i+int(sqrt(double(N))),-1.0));
            }
            else //B矩阵的中间行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i-1,-1.0));
                coefficients.push_back(Tri(i,i+1,-1.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-1.0));
                coefficients.push_back(Tri(i,i+int(sqrt(double(N))),-1.0));
            }
        }
        for(int i=N-int(sqrt( double(N) ));i<N;i++)
        {
            if(i==N-int(sqrt( double(N) ))) //B矩阵中的首行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i+1,-2.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-2.0));
            }
            else if(i==N-1) //B矩阵中的末行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i-1,-2.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-2.0));
            }
            else //B矩阵的中间行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i-1,-1.0));
                coefficients.push_back(Tri(i,i+1,-1.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-2.0));
            }
        }
    
        A.setFromTriplets(coefficients.begin(),coefficients.end());
        cout<<endl;
        int _index=A.nonZeros();
        cout<<_index<<endl;
        
        int n=A.cols();
        int *Ap=new int[n+1];
        Ap[0]=0;
        int num=A.nonZeros();
        int *Ai=new int[num];
        double *Ax=new double[num];
    
        int k=0;
        for(int i=0;i<A.outerSize();i++)
        {
            Ap[i+1]=Ap[i];
            for (Eigen::SparseMatrix<double>::InnerIterator it(A,i); it; ++it)
            {
                Ax[k]=it.value();
                
                Ai[k]=it.row();
                //cout<<Ai[k]<<" ";
                k++;
                Ap[i+1]++;
            }
            //cout<<Ap[i]<<" ";
        }
    //cout<<Ap[A.outerSize()]<<" ";
        double  *b=new double[n];
        for(int i=0;i<n;i++)
            b[i]=1;
        double *x=new double [n];
    
        double *null =(double *)NULL ;
        void *Symbolic, *Numeric ;
    
        umfpack_di_symbolic (n, n, Ap, Ai, Ax, &Symbolic, null, null);
        umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, null, null) ;
        umfpack_di_free_symbolic (&Symbolic);
        umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, null, null);
        umfpack_di_free_numeric (&Numeric) ;
    
        return 0;
    }

     参考:http://www.cnblogs.com/kmliang/archive/2013/03/14/2958852.html

  • 相关阅读:
    23、Linux实操篇——RPM与YUM
    22、Linux实操篇——进程管理(重点)
    21、Linux实操篇——网络配置
    20、Linux实操篇——磁盘分区、挂载
    19、Linux实操篇——组管理和权限管理
    18、实操篇——实用指令
    17、实操篇——用户管理
    UVALive 2521 Game Prediction 题解
    UVALive 2517 Moving Object Recognition(模拟)
    UVALive 2324 Human Gene Functions(动态规划)
  • 原文地址:https://www.cnblogs.com/kmliang/p/2962553.html
Copyright © 2011-2022 走看看