zoukankan      html  css  js  c++  java
  • HDU 5358 枚举+尺选

    soda has an integer array a1,a2,,ana1,a2,…,an. Let S(i,j)S(i,j) be the sum of ai,ai+1,,ajai,ai+1,…,aj. Now soda wants to know the value below:
    i=1nj=in(log2S(i,j)+1)×(i+j)
    Note: In this problem, you can consider log20 as 0. 

    InputThere are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case: 

    The first line contains an integer n(1n105), the number of integers in the array. 
    The next line contains nn integers a1,a2,,an(0≤ai≤105).
    OutputFor each test case, output the value.Sample Input

    1
    2
    1 1

    Sample Output

    12



    题意:求一个数组对题目中出现的那个公式的值

    做过好几道枚举的题了,但是遇到题还是想不出来使用枚举。

    根据题目给的数据范围,我们知道sum(1,n)<=1e10 floor(log2(1e10)) = 33
    所以我们枚举log2(sum+1)的值,进行尺选就可以了。

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define ll long long
    using namespace std;
    
    const int maxn = 1e5+5;
    ll s[maxn];
    ll low[50], high[50];
    int n, x;
    ll solve(int k){
        if(s[n]<low[k-1])return 0;
        ll l=1, r=1,num=0;
        for(ll j=1;j<=n;j++){
            l = max(l,j);
            while(l<=n && s[l]-s[j-1]<low[k-1])l++;
            r = max(r,l);
            while(r<=n && s[r]-s[j-1]<=high[k-1])r++;
            if(r>l)
                num += (r-l)*j+(l+r-1)*(r-l)/2;
        }
        return num*k;
    }
    int main(){
        int t;
        scanf("%d",&t);
        for(int i=1;i<35;i++){
            low[i] = 1ll<<i;
            high[i] = (1ll<<(i+1))-1;
        }
        low[0]=0,high[0]=1;
        while(t--){
            ll ans = 0;
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
                scanf("%d",&x),s[i] = s[i-1]+x;
            for(int i=1;i<35;i++)
                ans += solve(i);
            printf("%lld
    ",ans);
        }
        return 0;
    }
    View Code





  • 相关阅读:
    HTTP状态码及其含义
    c和python解决各种字符串反转问题的不同思路
    Python找出一串字符中出现最多的字符
    3个基本算法的实现技巧
    一种字符串搜索方法
    数据库开发经典总结
    apt、dpkg参数整理
    Python集合(set)类型的操作
    Python和Decorator(装饰器)模式
    Git使用基础
  • 原文地址:https://www.cnblogs.com/kongbb/p/10876289.html
Copyright © 2011-2022 走看看