zoukankan      html  css  js  c++  java
  • HDU 5358 枚举+尺选

    soda has an integer array a1,a2,,ana1,a2,…,an. Let S(i,j)S(i,j) be the sum of ai,ai+1,,ajai,ai+1,…,aj. Now soda wants to know the value below:
    i=1nj=in(log2S(i,j)+1)×(i+j)
    Note: In this problem, you can consider log20 as 0. 

    InputThere are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case: 

    The first line contains an integer n(1n105), the number of integers in the array. 
    The next line contains nn integers a1,a2,,an(0≤ai≤105).
    OutputFor each test case, output the value.Sample Input

    1
    2
    1 1

    Sample Output

    12



    题意:求一个数组对题目中出现的那个公式的值

    做过好几道枚举的题了,但是遇到题还是想不出来使用枚举。

    根据题目给的数据范围,我们知道sum(1,n)<=1e10 floor(log2(1e10)) = 33
    所以我们枚举log2(sum+1)的值,进行尺选就可以了。

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define ll long long
    using namespace std;
    
    const int maxn = 1e5+5;
    ll s[maxn];
    ll low[50], high[50];
    int n, x;
    ll solve(int k){
        if(s[n]<low[k-1])return 0;
        ll l=1, r=1,num=0;
        for(ll j=1;j<=n;j++){
            l = max(l,j);
            while(l<=n && s[l]-s[j-1]<low[k-1])l++;
            r = max(r,l);
            while(r<=n && s[r]-s[j-1]<=high[k-1])r++;
            if(r>l)
                num += (r-l)*j+(l+r-1)*(r-l)/2;
        }
        return num*k;
    }
    int main(){
        int t;
        scanf("%d",&t);
        for(int i=1;i<35;i++){
            low[i] = 1ll<<i;
            high[i] = (1ll<<(i+1))-1;
        }
        low[0]=0,high[0]=1;
        while(t--){
            ll ans = 0;
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
                scanf("%d",&x),s[i] = s[i-1]+x;
            for(int i=1;i<35;i++)
                ans += solve(i);
            printf("%lld
    ",ans);
        }
        return 0;
    }
    View Code





  • 相关阅读:
    是河南大学的悲哀???
    装完manjaro先要卸载
    技术博客
    VIM从入门到中级教程
    HTTP中GET与POST的区别
    AngularJS 拦截器实现全局$http请求loading效果
    angular指令监听ng-repeat渲染完成后执行自定义事件方法
    icheck如何修改样式大小
    Sublime text3 代码格式化插件
    代理模式小试
  • 原文地址:https://www.cnblogs.com/kongbb/p/10876289.html
Copyright © 2011-2022 走看看