zoukankan      html  css  js  c++  java
  • HDU 3416 Marriage Match IV(SPFA+最大流)

    Marriage Match IV

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1514    Accepted Submission(s): 427


    Problem Description
    Do not sincere non-interference。
    Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once. 


    So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
     
    Input
    The first line is an integer T indicating the case number.(1<=T<=65)
    For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.

    Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.

    At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
    There may be some blank line between each case.
     
    Output
    Output a line with a integer, means the chances starvae can get at most.
     
    Sample Input
    3 7 8 1 2 1 1 3 1 2 4 1 3 4 1 4 5 1 4 6 1 5 7 1 6 7 1 1 7 6 7 1 2 1 2 3 1 1 3 3 3 4 1 3 5 1 4 6 1 5 6 1 1 6 2 2 1 2 1 1 2 2 1 2
     
    Sample Output
    2 1 1
     
    Author
    starvae@HDU
     
    Source

    这题就是求从A到B的最短路径的条数。

    一条边只能经过一次。

    先通过最短路去除掉没有用的边。

    然后用一次最大流就是答案了。

    从A和B分别出发求最短路dist1,dist2.

    注意从B求得额时候要反向。

    如果dist1[a]+dist2[b]+c==dist1[B].那么这条边就是有用的。。

    我用的SPFA求最短路的。

    //============================================================================
    // Name        : HDU.cpp
    // Author      : 
    // Version     :
    // Copyright   : Your copyright notice
    // Description : Hello World in C++, Ansi-style
    //============================================================================
    
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    using namespace std;
    const int MAXN=2010;
    const int MAXM=2000010;
    const int INF=0x3f3f3f3f;
    
    //最大流SAP
    
    struct Node
    {
        int to,next,cap;
    }edge[MAXM];
    int tol;
    int head[MAXN];
    int gap[MAXN],dis[MAXN],pre[MAXN],cur[MAXN];
    void init()
    {
        tol=0;
        memset(head,-1,sizeof(head));
    }
    void addedge(int u,int v,int w,int rw=0)
    {
        edge[tol].to=v;edge[tol].cap=w;edge[tol].next=head[u];head[u]=tol++;
        edge[tol].to=u;edge[tol].cap=rw;edge[tol].next=head[v];head[v]=tol++;
    }
    
    int sap(int start,int end,int nodenum)
    {
        memset(dis,0,sizeof(dis));
        memset(gap,0,sizeof(gap));
        memcpy(cur,head,sizeof(head));
        int u=pre[start]=start,maxflow=0,aug=-1;
        gap[0]=nodenum;
        while(dis[start]<nodenum)
        {
            loop:
            for(int &i=cur[u];i!=-1;i=edge[i].next)
            {
                int v=edge[i].to;
                if(edge[i].cap&&dis[u]==dis[v]+1)
                {
                    if(aug==-1||aug>edge[i].cap)
                        aug=edge[i].cap;
                    pre[v]=u;
                    u=v;
                    if(v==end)
                    {
                        maxflow+=aug;
                        for(u=pre[u];v!=start;v=u,u=pre[u])
                        {
                            edge[cur[u]].cap-=aug;
                            edge[cur[u]^1].cap+=aug;
                        }
                        aug=-1;
                    }
                    goto loop;
                }
            }
            int mindis=nodenum;
            for(int i=head[u];i!=-1;i=edge[i].next)
            {
                int v=edge[i].to;
                if(edge[i].cap&&mindis>dis[v])
                {
                    cur[u]=i;
                    mindis=dis[v];
                }
            }
            if((--gap[dis[u]])==0)break;
            gap[dis[u]=mindis+1]++;
            u=pre[u];
        }
        return maxflow;
    }
    
    
    
    
    //SPFA
    int first[MAXN];
    bool vis[MAXN];
    int cnt[MAXN];
    int que[MAXN];
    int dist[MAXN];
    struct Edge
    {
        int to,v,next;
    }edge1[MAXM];
    int tt;
    void add(int a,int b,int v)
    {
        edge1[tt].to=b;
        edge1[tt].v=v;
        edge1[tt].next=first[a];
        first[a]=tt++;
    }
    bool SPFA(int start,int n)
    {
        int front=0,rear=0;
        for(int v=1;v<=n;v++)
        {
            if(v==start)
            {
                que[rear++]=v;
                vis[v]=true;
                cnt[v]=1;
                dist[v]=0;
            }
            else
            {
                vis[v]=false;
                cnt[v]=0;
                dist[v]=INF;
            }
        }
        while(front!=rear)
        {
            int u=que[front++];
            vis[u]=false;
            if(front>=MAXN)front=0;
            for(int i=first[u];i!=-1;i=edge1[i].next)
            {
                int v=edge1[i].to;
                if(dist[v]>dist[u]+edge1[i].v)
                {
                    dist[v]=dist[u]+edge1[i].v;
                    if(!vis[v])
                    {
                        vis[v]=true;
                        que[rear++]=v;
                        if(rear>=MAXN)rear=0;
                        if(++cnt[v]>n)return false;
                    }
                }
            }
        }
        return true;
    }
    int a[100010],b[100010],c[100010];
    int dist1[MAXN],dist2[MAXN];
    int main()
    {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        int T;
        int n,m;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&n,&m);
            int A,B;
            for(int i=0;i<m;i++)
                scanf("%d%d%d",&a[i],&b[i],&c[i]);
            scanf("%d%d",&A,&B);
            tt=0;
            memset(first,-1,sizeof(first));
            for(int i=0;i<m;i++)
                add(a[i],b[i],c[i]);
            SPFA(A,n);
    //        if(dist[B]==INF)
    //        {
    //            printf("0\n");
    //            continue;
    //        }
            memcpy(dist1,dist,sizeof(dist));
            tt=0;
            memset(first,-1,sizeof(first));
            for(int i=0;i<m;i++)
                add(b[i],a[i],c[i]);
            SPFA(B,n);
            memcpy(dist2,dist,sizeof(dist));
            init();
            for(int i=0;i<m;i++)
            {
                if(a[i]!=b[i] && dist1[a[i]]+dist2[b[i]]+c[i]==dist1[B])
                    addedge(a[i],b[i],1);
            }
            printf("%d\n",sap(A,B,n));
        }
        return 0;
    }
  • 相关阅读:
    利用FT232实现USB转串口
    用例图
    Flash与EEPROM
    spring -boot定时任务 quartz 基于 MethodInvokingJobDetailFactoryBean 实现
    得到中文首字母
    删除目录
    数字格式化工具
    Md5加密
    Double类型的数值 在写入excel时 如何去掉 科学计算法的 后面数值+ E的 情况
    数值的比较
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3059372.html
Copyright © 2011-2022 走看看