zoukankan      html  css  js  c++  java
  • POJ 2079 Triangle(凸包+旋转卡壳,求最大三角形面积)

    Triangle
    Time Limit: 3000MS   Memory Limit: 30000K
    Total Submissions: 7625   Accepted: 2234

    Description

    Given n distinct points on a plane, your task is to find the triangle that have the maximum area, whose vertices are from the given points.

    Input

    The input consists of several test cases. The first line of each test case contains an integer n, indicating the number of points on the plane. Each of the following n lines contains two integer xi and yi, indicating the ith points. The last line of the input is an integer −1, indicating the end of input, which should not be processed. You may assume that 1 <= n <= 50000 and −104 <= xi, yi <= 104 for all i = 1 . . . n.

    Output

    For each test case, print a line containing the maximum area, which contains two digits after the decimal point. You may assume that there is always an answer which is greater than zero.

    Sample Input

    3
    3 4
    2 6
    2 7
    5
    2 6
    3 9
    2 0
    8 0
    6 5
    -1

    Sample Output

    0.50
    27.00

    Source

     
     
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <iostream>
    #include <math.h>
    using namespace std;
    
    struct Point
    {
        int x,y;
        Point(int _x = 0, int _y = 0)
        {
            x = _x;
            y = _y;
        }
        Point operator -(const Point &b)const
        {
            return Point(x - b.x, y - b.y);
        }
        int operator ^(const Point &b)const
        {
            return x*b.y - y*b.x;
        }
        int operator *(const Point &b)const
        {
            return x*b.x + y*b.y;
        }
        void input()
        {
            scanf("%d%d",&x,&y);
        }
    };
    int dist2(Point a,Point b)
    {
        return (a-b)*(a-b);
    }
    const int MAXN = 50010;
    Point list[MAXN];
    int Stack[MAXN],top;
    bool _cmp(Point p1,Point p2)
    {
        int tmp = (p1-list[0])^(p2-list[0]);
        if(tmp > 0)return true;
        else if(tmp == 0 && dist2(p1,list[0]) <= dist2(p2,list[0]))
            return true;
        else return false;
    }
    void Graham(int n)
    {
        Point p0;
        int k = 0;
        p0 = list[0];
        for(int i = 1;i < n;i++)
            if(p0.y > list[i].y || (p0.y == list[i].y && p0.x > list[i].x))
            {
                p0 = list[i];
                k = i;
            }
        swap(list[0],list[k]);
        sort(list+1,list+n,_cmp);
        if(n == 1)
        {
            top = 1;
            Stack[0] = 0;
            return;
        }
        if(n == 2)
        {
            top = 2;
            Stack[0] = 0;
            Stack[1] = 1;
            return;
        }
        Stack[0] = 0;
        Stack[1] = 1;
        top = 2;
        for(int i = 2;i < n;i++)
        {
            while(top > 1 && ((list[Stack[top-1]]-list[Stack[top-2]])^(list[i]-list[Stack[top-2]])) <= 0 )
                top--;
            Stack[top++] = i;
        }
    }
    //旋转卡壳,求两点间距离平方的最大值
    int rotating_calipers(Point p[],int n)
    {
        int ans = 0;
        Point v;
        int cur = 1;
        for(int i = 0;i < n;i++)
        {
            int j = (i+1)%n;
            int k = (j+1)%n;
            while(j != i && k != i)
            {
                ans = max(ans,abs((p[j]-p[i])^(p[k]-p[i])) );
                while( ( (p[i]-p[j])^(p[(k+1)%n]-p[k]) ) < 0 )
                    k = (k+1)%n;
                j = (j+1)%n;
            }
        }
        return ans;
    }
    Point p[MAXN];
    int main()
    {
        int n;
        while(scanf("%d",&n) == 1)
        {
            if(n == -1)break;
            for(int i = 0;i < n;i++)
                list[i].input();
            Graham(n);
            for(int i = 0;i < top;i++)
                p[i] = list[Stack[i]];
            int ans = rotating_calipers(p,top);
            printf("%.2lf
    ",ans/2.0);
        }
        return 0;
    }
     
     
  • 相关阅读:
    git基本操作及设置
    5-13 多页面打包配置
    笔记待整理
    单例模式在多线程下的多种实现模式
    面试题小练习1106
    求两个字符串的最大共有子串
    单例模式
    静态初始化一个二维数组并将二维数组排序并输出
    java中数组的基本知识
    关于break语句如何结束多重循环的嵌套
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3221413.html
Copyright © 2011-2022 走看看