zoukankan      html  css  js  c++  java
  • HDU 4417 Super Mario(划分树)

    Super Mario

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1437    Accepted Submission(s): 690


    Problem Description
    Mario is world-famous plumber. His “burly” figure and amazing jumping ability reminded in our memory. Now the poor princess is in trouble again and Mario needs to save his lover. We regard the road to the boss’s castle as a line (the length is n), on every integer point i there is a brick on height hi. Now the question is how many bricks in [L, R] Mario can hit if the maximal height he can jump is H.
     
    Input
    The first line follows an integer T, the number of test data.
    For each test data:
    The first line contains two integers n, m (1 <= n <=10^5, 1 <= m <= 10^5), n is the length of the road, m is the number of queries.
    Next line contains n integers, the height of each brick, the range is [0, 1000000000].
    Next m lines, each line contains three integers L, R,H.( 0 <= L <= R < n 0 <= H <= 1000000000.)
     
    Output
    For each case, output "Case X: " (X is the case number starting from 1) followed by m lines, each line contains an integer. The ith integer is the number of bricks Mario can hit for the ith query.
     
    Sample Input
    1 10 10 0 5 2 7 5 4 3 8 7 7 2 8 6 3 5 0 1 3 1 1 9 4 0 1 0 3 5 5 5 5 1 4 6 3 1 5 7 5 7 3
     
    Sample Output
    Case 1: 4 0 0 3 1 2 0 1 5 1
     
    Source
     
    Recommend
    liuyiding
     

    这题就是查询一个区间内小于等于一个数的数的个数。

    用树状数组离线搞过。

    修改下划分树模板也可以搞定

    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <string.h>
    using namespace std;
    const int MAXN = 100010;
    int tree[20][MAXN];
    int sorted[MAXN];
    int toleft[20][MAXN];
    
    void build(int l,int r,int dep)
    {
        if(l == r)return;
        int mid = (l+r)>>1;
        int same = mid-l+1;
        for(int i = l;i <= r;i++)
            if(tree[dep][i] < sorted[mid])
                same--;
        int lpos = l;
        int rpos = mid+1;
        for(int i = l;i <= r;i++)
        {
            if(tree[dep][i] < sorted[mid])
                tree[dep+1][lpos++] = tree[dep][i];
            else if(tree[dep][i] == sorted[mid] && same > 0)
            {
                tree[dep+1][lpos++] = tree[dep][i];
                same--;
            }
            else
                tree[dep+1][rpos++] = tree[dep][i];
            toleft[dep][i] = toleft[dep][l-1] + lpos - l;
        }
        build(l,mid,dep+1);
        build(mid+1,r,dep+1);
    }
    //查询区间[l,r]上比k小于等于的数的个数
    int query(int L,int R,int l,int r,int dep,int k)
    {
        //printf("%d %d %d %d %d %d
    ",L,R,l,r,dep,k);
        if(l == r)
        {
            if(tree[dep][l] <= k)return 1;
            else return 0;
        }
        int mid = (L+R)>>1;
        int cnt = toleft[dep][r] - toleft[dep][l-1];
        if(sorted[mid] <= k)
        {
            int newr = r + toleft[dep][R] - toleft[dep][r];
            int newl = newr - (r-l+1-cnt) + 1;
            return cnt + query(mid+1,R,newl,newr,dep+1,k);
        }
        else
        {
            int newl = L + toleft[dep][l-1] - toleft[dep][L-1];
            int newr = newl + cnt -1;
            if(newr >= newl)return query(L,mid,newl,newr,dep+1,k);
            else return 0;
        }
    }
    int main()
    {
        int T;
        int iCase = 0;
        scanf("%d",&T);
        int n;
        while(T--)
        {
            iCase ++;
            int m;
            scanf("%d%d",&n,&m);
            memset(tree,0,sizeof(tree));
            memset(toleft,0,sizeof(toleft));
            for(int i = 1;i <= n;i++)
            {
                scanf("%d",&tree[0][i]);
                sorted[i] = tree[0][i];
            }
            sort(sorted+1,sorted+n+1);
            build(1,n,0);
            int L,R,H;
            printf("Case %d:
    ",iCase);
            while(m--)
            {
                scanf("%d%d%d",&L,&R,&H);
                L++;R++;
                printf("%d
    ",query(1,n,L,R,0,H));
            }
        }
        return 0;
    }
  • 相关阅读:
    iOS程序-UIScrollView的基本使用
    iOS方法类:CGAffineTransform
    指南针开发
    iOS用if语句判断null
    UIView常用的一些方法
    xcode视图缩短了
    TCP&UDP基础
    朴素贝叶斯方法在乳腺肿块检测中的应用
    进程与线程的相关知识点总结
    C++中sizeof操作符与strlen函数
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3224437.html
Copyright © 2011-2022 走看看