zoukankan      html  css  js  c++  java
  • HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)

    Strongly connected

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 53    Accepted Submission(s): 15


    Problem Description
    Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can add that the graph is still a simple directed graph. Also, after you add these edges, this graph must NOT be strongly connected.
    A simple directed graph is a directed graph having no multiple edges or graph loops.
    A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point. 
     
    Input
    The first line of date is an integer T, which is the number of the text cases.
    Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
     
    Output
    For each case, you should output the maximum number of the edges you can add.
    If the original graph is strongly connected, just output -1.
     
    Sample Input
    3 3 3 1 2 2 3 3 1 3 3 1 2 2 3 1 3 6 6 1 2 2 3 3 1 4 5 5 6 6 4
     
    Sample Output
    Case 1: -1 Case 2: 1 Case 3: 15
     
    Source
     
    Recommend
    zhuyuanchen520
     

     Tarjan 缩点。

    /*
     *  Author:kuangbin
     *  1004.cpp
     */
    
    #include <stdio.h>
    #include <algorithm>
    #include <string.h>
    #include <iostream>
    #include <map>
    #include <vector>
    #include <queue>
    #include <set>
    #include <string>
    #include <math.h>
    using namespace std;
    /*
     * Tarjan算法
     * 复杂度O(N+M)
     */
    const int MAXN = 100010;//点数
    const int MAXM = 100010;//边数
    struct Edge
    {
        int to,next;
    }edge[MAXM];
    int head[MAXN],tot;
    int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
    int Index,top;
    int scc;//强连通分量的个数
    bool Instack[MAXN];
    int num[MAXN];//各个强连通分量包含点的个数,数组编号1~scc
    //num数组不一定需要,结合实际情况
    
    void addedge(int u,int v)
    {
        edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
    }
    void Tarjan(int u)
    {
        int v;
        Low[u] = DFN[u] = ++Index;
        Stack[top++] = u;
        Instack[u] = true;
        for(int i = head[u];i != -1;i = edge[i].next)
        {
            v = edge[i].to;
            if( !DFN[v] )
            {
                Tarjan(v);
                if( Low[u] > Low[v] )Low[u] = Low[v];
            }
            else if(Instack[v] && Low[u] > DFN[v])
                Low[u] = DFN[v];
        }
        if(Low[u] == DFN[u])
        {
            scc++;
            do
            {
                v = Stack[--top];
                Instack[v] = false;
                Belong[v] = scc;
                num[scc]++;
            }
            while( v != u);
        }
    }
    void solve(int N)
    {
        memset(DFN,0,sizeof(DFN));
        memset(Instack,false,sizeof(Instack));
        memset(num,0,sizeof(num));
        Index = scc = top = 0;
        for(int i = 1;i <= N;i++)
            if(!DFN[i])
                Tarjan(i);
    }
    void init()
    {
        tot = 0;
        memset(head,-1,sizeof(head));
    }
    int in[MAXN],out[MAXN];
    int main()
    {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        int T;
        scanf("%d",&T);
        int iCase = 0;
        int n,m;
        int u,v;
        while(T--)
        {
            iCase++;
            init();
            scanf("%d%d",&n,&m);
            for(int i = 0;i < m;i++)
            {
                scanf("%d%d",&u,&v);
                addedge(u,v);
            }
            solve(n);
            if(scc == 1)
            {
                printf("Case %d: -1
    ",iCase);
                continue;
            }
            for(int i = 1;i <= scc;i++)
            {
                in[i] = 0;
                out[i] = 0;
            }
            for(int u = 1;u <= n;u++)
                for(int i = head[u];i != -1;i = edge[i].next)
            {
                int v = edge[i].to;
                if(Belong[u]==Belong[v])continue;
                out[Belong[u]]++;
                in[Belong[v]]++;
            }
            long long sss = (long long)n*(n-1) - m;
            long long ans = 0;
            for(int i = 1;i <= scc;i++)
            {
                if(in[i]==0 || out[i] == 0)
                    ans = max(ans,sss - (long long)num[i]*(n-num[i]));
            }
            printf("Case %d: %d
    ",iCase,ans);
        }
        return 0;
    }
  • 相关阅读:
    SAP系统邮件功能配置
    SAP SQL 表inner join 不同长度字段连接
    Read_text 获取传入参数
    imageio.write 惹的祸,占用cpu过高,堆溢出问题
    消息队列报 堆溢出解决方案
    技术文档java
    maven:项目中一些依赖不能更新可使用如下命令进行更新 maven库
    volatile 验证 java
    用Lock 和Newcondition实现同步容器 java
    计算数组中有几对相反数
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3230625.html
Copyright © 2011-2022 走看看