zoukankan      html  css  js  c++  java
  • HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)

    Strongly connected

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 53    Accepted Submission(s): 15


    Problem Description
    Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can add that the graph is still a simple directed graph. Also, after you add these edges, this graph must NOT be strongly connected.
    A simple directed graph is a directed graph having no multiple edges or graph loops.
    A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point. 
     
    Input
    The first line of date is an integer T, which is the number of the text cases.
    Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
     
    Output
    For each case, you should output the maximum number of the edges you can add.
    If the original graph is strongly connected, just output -1.
     
    Sample Input
    3 3 3 1 2 2 3 3 1 3 3 1 2 2 3 1 3 6 6 1 2 2 3 3 1 4 5 5 6 6 4
     
    Sample Output
    Case 1: -1 Case 2: 1 Case 3: 15
     
    Source
     
    Recommend
    zhuyuanchen520
     

     Tarjan 缩点。

    /*
     *  Author:kuangbin
     *  1004.cpp
     */
    
    #include <stdio.h>
    #include <algorithm>
    #include <string.h>
    #include <iostream>
    #include <map>
    #include <vector>
    #include <queue>
    #include <set>
    #include <string>
    #include <math.h>
    using namespace std;
    /*
     * Tarjan算法
     * 复杂度O(N+M)
     */
    const int MAXN = 100010;//点数
    const int MAXM = 100010;//边数
    struct Edge
    {
        int to,next;
    }edge[MAXM];
    int head[MAXN],tot;
    int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
    int Index,top;
    int scc;//强连通分量的个数
    bool Instack[MAXN];
    int num[MAXN];//各个强连通分量包含点的个数,数组编号1~scc
    //num数组不一定需要,结合实际情况
    
    void addedge(int u,int v)
    {
        edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
    }
    void Tarjan(int u)
    {
        int v;
        Low[u] = DFN[u] = ++Index;
        Stack[top++] = u;
        Instack[u] = true;
        for(int i = head[u];i != -1;i = edge[i].next)
        {
            v = edge[i].to;
            if( !DFN[v] )
            {
                Tarjan(v);
                if( Low[u] > Low[v] )Low[u] = Low[v];
            }
            else if(Instack[v] && Low[u] > DFN[v])
                Low[u] = DFN[v];
        }
        if(Low[u] == DFN[u])
        {
            scc++;
            do
            {
                v = Stack[--top];
                Instack[v] = false;
                Belong[v] = scc;
                num[scc]++;
            }
            while( v != u);
        }
    }
    void solve(int N)
    {
        memset(DFN,0,sizeof(DFN));
        memset(Instack,false,sizeof(Instack));
        memset(num,0,sizeof(num));
        Index = scc = top = 0;
        for(int i = 1;i <= N;i++)
            if(!DFN[i])
                Tarjan(i);
    }
    void init()
    {
        tot = 0;
        memset(head,-1,sizeof(head));
    }
    int in[MAXN],out[MAXN];
    int main()
    {
        //freopen("in.txt","r",stdin);
        //freopen("out.txt","w",stdout);
        int T;
        scanf("%d",&T);
        int iCase = 0;
        int n,m;
        int u,v;
        while(T--)
        {
            iCase++;
            init();
            scanf("%d%d",&n,&m);
            for(int i = 0;i < m;i++)
            {
                scanf("%d%d",&u,&v);
                addedge(u,v);
            }
            solve(n);
            if(scc == 1)
            {
                printf("Case %d: -1
    ",iCase);
                continue;
            }
            for(int i = 1;i <= scc;i++)
            {
                in[i] = 0;
                out[i] = 0;
            }
            for(int u = 1;u <= n;u++)
                for(int i = head[u];i != -1;i = edge[i].next)
            {
                int v = edge[i].to;
                if(Belong[u]==Belong[v])continue;
                out[Belong[u]]++;
                in[Belong[v]]++;
            }
            long long sss = (long long)n*(n-1) - m;
            long long ans = 0;
            for(int i = 1;i <= scc;i++)
            {
                if(in[i]==0 || out[i] == 0)
                    ans = max(ans,sss - (long long)num[i]*(n-num[i]));
            }
            printf("Case %d: %d
    ",iCase,ans);
        }
        return 0;
    }
  • 相关阅读:
    Sublime Text3 python自动补全问题——Sublime Text3安装Anaconda插件
    微信小程序如何刷新当前界面
    No 'Access-Control-Allow-Origin' header is present on the requested resource——Web Api跨域问题
    云时代架构阅读笔记四——线程池是如何使我们的应用变快的?
    jQuery实现图片放大镜效果
    云时代架构阅读笔记三——架构师比程序员厉害在哪里?
    Ajax学习系列——jQuery中Ajax的请求方式
    读书笔记:梯度是怎么消失的
    读书笔记:初始化神经网络
    读书笔记:对抗过拟合
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3230625.html
Copyright © 2011-2022 走看看