zoukankan      html  css  js  c++  java
  • HDU 4691 Front compression (2013多校9 1006题 后缀数组)

    Front compression

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
    Total Submission(s): 158    Accepted Submission(s): 63


    Problem Description
    Front compression is a type of delta encoding compression algorithm whereby common prefixes and their lengths are recorded so that they need not be duplicated. For example:

    The size of the input is 43 bytes, while the size of the compressed output is 40. Here, every space and newline is also counted as 1 byte.
    Given the input, each line of which is a substring of a long string, what are sizes of it and corresponding compressed output?
     
    Input
    There are multiple test cases. Process to the End of File.
    The first line of each test case is a long string S made up of lowercase letters, whose length doesn't exceed 100,000. The second line contains a integer 1 ≤ N ≤ 100,000, which is the number of lines in the input. Each of the following N lines contains two integers 0 ≤ A < B ≤ length(S), indicating that that line of the input is substring [A, B) of S.
     
    Output
    For each test case, output the sizes of the input and corresponding compressed output.
     
    Sample Input
    frcode 2 0 6 0 6 unitedstatesofamerica 3 0 6 0 12 0 21 myxophytamyxopodnabnabbednabbingnabit 6 0 9 9 16 16 19 19 25 25 32 32 37
     
    Sample Output
    14 12 42 31 43 40
     
    Author
    Zejun Wu (watashi)
     
    Source
     
    Recommend
    zhuyuanchen520
     

    后缀数组随便搞一下就可以了

      1 /* ***********************************************
      2 Author        :kuangbin
      3 Created Time  :2013/8/20 13:40:03
      4 File Name     :F:2013ACM练习2013多校91006.cpp
      5 ************************************************ */
      6 
      7 #include <stdio.h>
      8 #include <string.h>
      9 #include <iostream>
     10 #include <algorithm>
     11 #include <vector>
     12 #include <queue>
     13 #include <set>
     14 #include <map>
     15 #include <string>
     16 #include <math.h>
     17 #include <stdlib.h>
     18 #include <time.h>
     19 using namespace std;
     20 const int MAXN=100010;
     21 int t1[MAXN],t2[MAXN],c[MAXN];//求SA数组需要的中间变量,不需要赋值
     22 //待排序的字符串放在s数组中,从s[0]到s[n-1],长度为n,且最大值小于m,
     23 //除s[n-1]外的所有s[i]都大于0,r[n-1]=0
     24 //函数结束以后结果放在sa数组中
     25 bool cmp(int *r,int a,int b,int l)
     26 {
     27     return r[a] == r[b] && r[a+l] == r[b+l];
     28 }
     29 void da(int str[],int sa[],int rank[],int height[],int n,int m)
     30 {
     31     n++;
     32     int i, j, p, *x = t1, *y = t2;
     33     //第一轮基数排序,如果s的最大值很大,可改为快速排序
     34     for(i = 0;i < m;i++)c[i] = 0;
     35     for(i = 0;i < n;i++)c[x[i] = str[i]]++;
     36     for(i = 1;i < m;i++)c[i] += c[i-1];
     37     for(i = n-1;i >= 0;i--)sa[--c[x[i]]] = i;
     38     for(j = 1;j <= n; j <<= 1)
     39     {
     40         p = 0;
     41         //直接利用sa数组排序第二关键字
     42         for(i = n-j; i < n; i++)y[p++] = i;//后面的j个数第二关键字为空的最小
     43         for(i = 0; i < n; i++)if(sa[i] >= j)y[p++] = sa[i] - j;
     44         //这样数组y保存的就是按照第二关键字排序的结果
     45         //基数排序第一关键字
     46         for(i = 0; i < m; i++)c[i] = 0;
     47         for(i = 0; i < n; i++)c[x[y[i]]]++;
     48         for(i = 1; i < m;i++)c[i] += c[i-1];
     49         for(i = n-1; i >= 0;i--)sa[--c[x[y[i]]]] = y[i];
     50         //根据sa和x数组计算新的x数组
     51         swap(x,y);
     52         p = 1; x[sa[0]] = 0;
     53         for(i = 1;i < n;i++)
     54             x[sa[i]] = cmp(y,sa[i-1],sa[i],j)?p-1:p++;
     55         if(p >= n)break;
     56         m = p;//下次基数排序的最大值
     57     }
     58     int k = 0;
     59     n--;
     60     for(i = 0;i <= n;i++)rank[sa[i]] = i;
     61     for(i = 0;i < n;i++)
     62     {
     63         if(k)k--;
     64         j = sa[rank[i]-1];
     65         while(str[i+k] == str[j+k])k++;
     66         height[rank[i]] = k;
     67     }
     68 }
     69 int rank[MAXN],height[MAXN];
     70 int RMQ[MAXN];
     71 int mm[MAXN];
     72 int best[20][MAXN];
     73 void initRMQ(int n)
     74 {
     75     mm[0]=-1;
     76     for(int i=1;i<=n;i++)
     77         mm[i]=((i&(i-1))==0)?mm[i-1]+1:mm[i-1];
     78     for(int i=1;i<=n;i++)best[0][i]=i;
     79     for(int i=1;i<=mm[n];i++)
     80         for(int j=1;j+(1<<i)-1<=n;j++)
     81         {
     82             int a=best[i-1][j];
     83             int b=best[i-1][j+(1<<(i-1))];
     84             if(RMQ[a]<RMQ[b])best[i][j]=a;
     85             else best[i][j]=b;
     86         }
     87 }
     88 int askRMQ(int a,int b)
     89 {
     90     int t;
     91     t=mm[b-a+1];
     92     b-=(1<<t)-1;
     93     a=best[t][a];b=best[t][b];
     94     return RMQ[a]<RMQ[b]?a:b;
     95 }
     96 int lcp(int a,int b)
     97 {
     98     a=rank[a];b=rank[b];
     99     if(a>b)swap(a,b);
    100     return height[askRMQ(a+1,b)];
    101 }
    102 char str[MAXN];
    103 int r[MAXN];
    104 int sa[MAXN];
    105 int A[MAXN],B[MAXN];
    106 int calc(int n)
    107 {
    108     if(n == 0)return 1;
    109     int ret = 0;
    110     while(n)
    111     {
    112         ret++;
    113         n /= 10;
    114     }
    115     return ret;
    116 }
    117 int main()
    118 {
    119     //freopen("in.txt","r",stdin);
    120     //freopen("out.txt","w",stdout);
    121     while(scanf("%s",str)==1)
    122     {
    123         int n = strlen(str);
    124         for(int i = 0;i < n;i++)
    125             r[i] = str[i];
    126         r[n] = 0;
    127         da(r,sa,rank,height,n,128);
    128         for(int i = 1;i <= n;i++)
    129             RMQ[i] = height[i];
    130         initRMQ(n);
    131         int k,u,v;
    132         long long ans1 = 0, ans2 = 0;
    133         scanf("%d",&k);
    134         for(int i = 0;i < k;i++)
    135         {
    136             scanf("%d%d",&A[i],&B[i]);
    137             if(i == 0)
    138             {
    139                 ans1 += B[i] - A[i] + 1;
    140                 ans2 += B[i] - A[i] + 3;
    141                 continue;
    142             }
    143             int tmp ;
    144             if(A[i]!= A[i-1])tmp = lcp(A[i],A[i-1]);
    145             else tmp = 10000000;
    146             tmp = min(tmp,B[i]-A[i]);
    147             tmp = min(tmp,B[i-1]-A[i-1]);
    148             ans1 += B[i] - A[i] + 1;
    149             ans2 += B[i] - A[i] - tmp + 1;
    150             ans2 += 1;
    151             ans2 += calc(tmp);
    152         }
    153         printf("%I64d %I64d
    ",ans1,ans2);
    154     }
    155     return 0;
    156 }
  • 相关阅读:
    java之认识基本数据类型及其封装类装箱和拆箱总结
    java之集合类特性对比分析列表
    <转>泛型的内部原理:类型擦除以及类型擦除带来的问题
    java之集合类框架的简要知识点:泛型的类型擦除
    java之方法覆盖的坑
    java入门概念个人理解之访问修饰符
    blog开篇
    卓越管理的实践技巧(4)如何才能给予有效的反馈 Guide to Giving Effective Feedback
    权限管理系统之组织管理
    卓越管理的实践技巧(3)推动团队管理的要点 Facilitation Essentials for Managers
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3270836.html
Copyright © 2011-2022 走看看