zoukankan      html  css  js  c++  java
  • HUST 1017

    1017 - Exact cover

    时间限制:15秒 内存限制:128兆

    自定评测 5584 次提交 2975 次通过
    题目描述
    There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.
    输入
    There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.
    输出
    First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".
    样例输入
    6 7
    3 1 4 7
    2 1 4
    3 4 5 7
    3 3 5 6
    4 2 3 6 7
    2 2 7
    
    样例输出
    3 2 4 6

    题目链接:http://acm.hust.edu.cn/problem/show/1017

    精确覆盖入门题。

    Dancing Links 就是一种加快搜索速度的方法,采用四向链表。

      1 /* ***********************************************
      2 Author        :kuangbin
      3 Created Time  :2014/5/25 22:55:25
      4 File Name     :E:2014ACM专题学习DLXHUST1017.cpp
      5 ************************************************ */
      6 
      7 #include <stdio.h>
      8 #include <string.h>
      9 #include <iostream>
     10 #include <algorithm>
     11 #include <vector>
     12 #include <queue>
     13 #include <set>
     14 #include <map>
     15 #include <string>
     16 #include <math.h>
     17 #include <stdlib.h>
     18 #include <time.h>
     19 using namespace std;
     20 const int maxnode = 100010;
     21 const int MaxM = 1010;
     22 const int MaxN = 1010;
     23 struct DLX
     24 {
     25     int n,m,size;
     26     int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
     27     int H[MaxN], S[MaxM];
     28     int ansd, ans[MaxN];
     29     void init(int _n,int _m)
     30     {
     31         n = _n;
     32         m = _m;
     33         for(int i = 0;i <= m;i++)
     34         {
     35             S[i] = 0;
     36             U[i] = D[i] = i;
     37             L[i] = i-1;
     38             R[i] = i+1;
     39         }
     40         R[m] = 0; L[0] = m;
     41         size = m;
     42         for(int i = 1;i <= n;i++)
     43             H[i] = -1;
     44     }
     45     void Link(int r,int c)
     46     {
     47         ++S[Col[++size]=c];
     48         Row[size] = r;
     49         D[size] = D[c];
     50         U[D[c]] = size;
     51         U[size] = c;
     52         D[c] = size;
     53         if(H[r] < 0)H[r] = L[size] = R[size] = size;
     54         else
     55         {
     56             R[size] = R[H[r]];
     57             L[R[H[r]]] = size;
     58             L[size] = H[r];
     59             R[H[r]] = size;
     60         }
     61     }
     62     void remove(int c)
     63     {
     64         L[R[c]] = L[c]; R[L[c]] = R[c];
     65         for(int i = D[c];i != c;i = D[i])
     66             for(int j = R[i];j != i;j = R[j])
     67             {
     68                 U[D[j]] = U[j];
     69                 D[U[j]] = D[j];
     70                 --S[Col[j]];
     71             }
     72     }
     73     void resume(int c)
     74     {
     75         for(int i = U[c];i != c;i = U[i])
     76             for(int j = L[i];j != i;j = L[j])
     77                 ++S[Col[U[D[j]]=D[U[j]]=j]];
     78         L[R[c]] = R[L[c]] = c;
     79     }
     80     //d为递归深度
     81     bool Dance(int d)
     82     {
     83         if(R[0] == 0)
     84         {
     85             ansd = d;
     86             return true;
     87         }
     88         int c = R[0];
     89         for(int i = R[0];i != 0;i = R[i])
     90             if(S[i] < S[c])
     91                 c = i;
     92         remove(c);
     93         for(int i = D[c];i != c;i = D[i])
     94         {
     95             ans[d] = Row[i];
     96             for(int j = R[i]; j != i;j = R[j])remove(Col[j]);
     97             if(Dance(d+1))return true;
     98             for(int j = L[i]; j != i;j = L[j])resume(Col[j]);
     99         }
    100         resume(c);
    101         return false;
    102     }
    103 };
    104 
    105 DLX g;
    106 int main()
    107 {
    108     //freopen("in.txt","r",stdin);
    109     //freopen("out.txt","w",stdout);
    110     int n,m;
    111     while(scanf("%d%d",&n,&m) == 2)
    112     {
    113         g.init(n,m);
    114         for(int i = 1;i <= n;i++)
    115         {
    116             int num,j;
    117             scanf("%d",&num);
    118             while(num--)
    119             {
    120                 scanf("%d",&j);
    121                 g.Link(i,j);
    122             }
    123         }
    124         if(!g.Dance(0))printf("NO
    ");
    125         else
    126         {
    127             printf("%d",g.ansd);
    128             for(int i = 0;i < g.ansd;i++)
    129                 printf(" %d",g.ans[i]);
    130             printf("
    ");
    131         }
    132     }
    133     return 0;
    134 }
  • 相关阅读:
    P3803 【模板】多项式乘法(FFT)
    P2264 情书 Trie匹配
    CF877E Danil and a Part-time Job 线段树维护dfs序
    P3810 【模板】三维偏序(陌上花开)
    LOJ #6282. 数列分块入门 6
    LOJ #6281. 数列分块入门 5
    LOJ #6280. 数列分块入门 4
    LOJ #6279. 数列分块入门 3
    LOJ #6278. 数列分块入门 2
    LOJ #6277. 数列分块入门 1
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3752854.html
Copyright © 2011-2022 走看看