zoukankan      html  css  js  c++  java
  • HDU

    Hakase has n numbers in a line. At first, they are all equal to 1. Besides, Hakase is interested in primes. She will choose a continuous subsequence [l, r] and a prime parameter x each time and for every l ≤ i ≤ r, she will change ai into ai ∗ x. To simplify the problem, x will be 2 or 3. After m operations, Hakase wants to know what is the greatest common divisor of all the numbers.

    Input

    The first line contains an integer T (1 ≤ T ≤ 10) representing the number of test cases. For each test case, the first line contains two integers n (1 ≤ n ≤ 100000) and m (1 ≤ m ≤ 100000), where n refers to the length of the whole sequence and m means there are m operations. The following m lines, each line contains three integers li (1 ≤ li ≤ n), ri (1 ≤ ri ≤ n), xi (xi ∈ {2, 3}), which are referred above.

    Output

    For each test case, print an integer in one line, representing the greatest common divisor of the sequence. Due to the answer might be very large, print the answer modulo 998244353.

    题意:给定数组a,a初始值都为1,在每个给定区间内所有数都乘2或3,找到数组a的最大公约数

    分析:可以用树状数组或者线段树做,但他们的代码复杂度相对高,可以考虑到,本题中的最大公约数就是*2、*3次数最少的那个数。所以找出他们,然后利用快速幂求解

    AC代码

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    typedef long long ll;
    const int N=1e6;
    const ll mod=998244353;
    const int inf=0x3f3f3f3f;
    int n,m;
    ll d[N],e[N];
    ll f(ll a,ll b,ll c){
        ll ans=1;
        while(b){
            if(b&1) ans=(ans*a)%c;
            a=(a*a)%c;
            b>>=1;
        }
        return ans%c;
    }
    int main(){
        int t;
        ll a,b,c;
        scanf("%d",&t);
        while(t--){
            memset(d,0,sizeof(d));
            memset(e,0,sizeof(e));
            scanf("%d%d",&n,&m);
            while(m--){
                scanf("%lld%lld%lld",&a,&b,&c);
                if(c==2){
                    d[a]++;
                    d[b+1]--;
                }
                else{
                    e[a]++;
                    e[b+1]--;
                }
            }
            ll sum1=0,sum2=0,min1=inf,min2=inf;
            for(int i=1;i<=n;i++){
                sum1+=d[i];
                min1=min(min1,sum1);
                sum2+=e[i];
                min2=min(min2,sum2);
            }
            ll ans=f(2,min1,mod);
            ans=ans*f(3,min2,mod);
            printf("%lld
    ",ans%mod);
        }
        return 0;
    }
    

      

  • 相关阅读:
    【基础算法】最长连续不重复子序列
    【python----发轫之始】【简单生活小助手】
    【python----发轫之始】【基础知识总结】
    【转】C#接口知识
    SaltStack漏洞导致的挖矿排查思路
    CVE-2020-2551复现过程
    远程调试docker构建的weblogic
    GOF23-工厂模式
    GOF23-单列模式
    VU TPS QPS RT 计算公式
  • 原文地址:https://www.cnblogs.com/kun-/p/9726712.html
Copyright © 2011-2022 走看看