http://acm.hdu.edu.cn/showproblem.php?pid=5014
从小数開始模拟找方法规律,然后推广,尤其敢猜敢尝试,错了一种思路继续猜-----这是一种非常重要的方法啊
这道题还是从小数開始模拟,我是依据16以内的找的规律
依据
2^k---2^k-1
2^k+1---2^k-2
...
这样陪下去
当2^k==n的时候,
从2^(k-1)按相同的方法配下去,
WA了非常久,是lower_bound用错了 只是没明确为啥 换成upper_bound也能够AC....但还不明确为啥lower_bound WA......
目的是找以一个<=n的下标 int id=lower_bound(mi,mi+17,n)-mi; if(mi[id]>n)id--; 跟 int id=16; while(mi[id]>n && id>=0)id--; 不一样么?后者AC 前者WA。。
以下是AC代码
//#pragma comment(linker, "/STACK:102400000,102400000") #include <cstdio> #include <cstring> #include <algorithm> #include <string> #include <iostream> #include <iomanip> #include <cmath> #include <map> #include <set> #include <queue> using namespace std; #define ls(rt) rt*2 #define rs(rt) rt*2+1 #define ll long long #define ull unsigned long long #define rep(i,s,e) for(int i=s;i<e;i++) #define repe(i,s,e) for(int i=s;i<=e;i++) #define CL(a,b) memset(a,b,sizeof(a)) #define IN(s) freopen(s,"r",stdin) #define OUT(s) freopen(s,"w",stdout) const ll ll_INF = ((ull)(-1))>>1; const double EPS = 1e-8; const double pi = acos(-1.0); const int INF = 100000000; const int MAXN = 1e5+50; ll a[MAXN],ans[MAXN]; const ll mi[20]={1,2,4,8,16, 32,64,128,256,512, 1024,2048,4096,8192,16384, 32768,65536}; ll n; void print() { ll out=0; out=ans[a[0]]^a[0]; for(ll i=1;i<=n;i++) out+=ans[a[i]]^a[i]; printf("%I64d ",out); printf("%I64d",ans[a[0]]); for(ll i=1;i<=n;i++) printf(" %I64d",ans[a[i]]); putchar(' '); } int main() { //OUT("hdu5014.txt"); //IN("hdu5014.txt"); while(~scanf("%I64d",&n)) { for(ll i=0;i<=n;i++) scanf("%I64d",&a[i]),ans[i]=i; //int id=lower_bound(mi,mi+17,n)-mi; // id>=1 由于n>=1 int id=16; while(mi[id]>n && id>=0)id--; if(id == 0) //说明n == 1 { ans[0]=1; ans[1]=0; print(); continue; } if(mi[id]>n)id--; ll cnt=0,last=0,ls=n; while(id>=0&& ls>=0) { ll k; for(k=0;mi[id]-k-1>=0 && k+mi[id]<=ls;k++) { //printf("id=%d mi[id]+k=%d mi[id]-k-1=%d ",id,mi[id]+k,mi[id]-k-1); swap(ans[mi[id]+k],ans[mi[id]-k-1]); //cnt+=2; last=mi[id]-k-1; } ls=last-1; id--; } if(ans[0]==0 && ans[1]==1)swap(ans[0],ans[1]); print(); } return 0; }