题目
分析
毫无疑问 (dp)
设 (f_{i,j}) 表示选到第 (i) 层,已选 (j) 个矩阵最大覆盖面积
那么 (f_{i,j}=max{f_{l,j}+w_i*(i-l)})
显然斜率优化
(Code)
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long LL;
int n , k , q[20005];
LL f[20005][105];
struct node{
int x , y , w;
}p[20005];
double slope(int j , int l , int r)
{
return 1.0 * (f[l][j] - f[r][j]) / (l - r);
}
int main()
{
freopen("pyramid.in" , "r" , stdin);
freopen("pyramid.out" , "w" , stdout);
scanf("%d%d" , &n , &k);
for(register int i = 1; i <= n; i++)
scanf("%d%d" , &p[i].x , &p[i].y) , p[i].w = p[i].y - p[i].x + 1;
int h , t;
for(register int j = 1; j <= k; j++)
{
h = t = 1;
for(register int i = 1; i <= n; i++)
{
while (h < t && slope(j - 1 , q[h + 1] , q[h]) > p[i].w) h++;
f[i][j] = f[q[h]][j - 1] + 1LL * p[i].w * (i - q[h]);
while (h <= t && slope(j - 1 , q[t] , q[t - 1]) < slope(j - 1 , i , q[t])) t--;
q[++t] = i;
}
}
LL ans = 0;
for(register int i = 1; i <= n; i++) ans = max(ans , f[i][k]);
printf("%lld" , ans);
}