zoukankan      html  css  js  c++  java
  • Python中Numpy ndarray的使用

    本文主讲Python中Numpy数组的类型、全0全1数组的生成、随机数组、数组操作、矩阵的简单运算、矩阵的数学运算。

    尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便。

    定义数组

    >>> import numpy as np
    >>> m = np.array([[1,2,3], [2,3,4]])       #定义矩阵,int64
    >>> m
    array([[1, 2, 3],
           [2, 3, 4]])
    >>> m = np.array([[1,2,3], [2,3,4]], dtype=np.float)   #定义矩阵,float64
    >>> m
    array([[1., 2., 3.],
           [2., 3., 4.]])
    >>> print(m.dtype)    #数据类型    
    float64
    >>> print(m.shape)    #形状2行3列
    (2, 3)
    >>> print(m.ndim)     #维数
    2
    >>> print(m.size)     #元素个数
    6
    >>> print(type(m))
    <class 'numpy.ndarray'>

    还有一些特殊的方法可以定义矩阵

    >>> m = np.zeros((2,2))          #全0
    >>> m
    array([[0., 0.],
           [0., 0.]])
    >>> print(type(m))               #也是ndarray类型
    <class 'numpy.ndarray'>
    >>> m = np.ones((2,2,3))        #全1
    >>> m = np.full((3,4), 7)       #全为7
    >>> np.eye(3)                   #单位矩阵
    array([[1., 0., 0.],
           [0., 1., 0.],
           [0., 0., 1.]])
    >>> np.arange(20).reshape(4,5) #生成一个4行5列的数组
    >>> >>> np.random.random((2,3)) #[0,1)随机数 array([[0.51123127, 0.40852721, 0.26159126], [0.42450279, 0.34763668, 0.06167501]]) >>> np.random.randint(1,10,(2,3)) #[1,10)随机整数的2行3列数组 array([[5, 4, 9], [2, 5, 7]]) >>> np.random.randn(2,3) #正态随机分布 array([[-0.29538656, -0.50370707, -2.05627716], [-1.50126655, 0.41884067, 0.67306605]]) >>> np.random.choice([10,20,30], (2,3)) #随机选择 array([[10, 20, 10], [30, 10, 20]]) >>> np.random.beta(1,10,(2,3)) #贝塔分布 array([[0.01588963, 0.12635485, 0.22279098], [0.08950147, 0.02244569, 0.00953366]])

    操作数组

    >>> from numpy import *
    >>> a1=array([1,1,1])    #定义一个数组
    >>> a2=array([2,2,2])
    >>> a1+a2                #对于元素相加
    array([3, 3, 3])
    >>> a1*2                 #乘一个数
    array([2, 2, 2])
    
    ##
    >>> a1=np.array([1,2,3])
    >>> a1
    array([1, 2, 3])
    >>> a1**3              #表示对数组中的每个数做立方
    array([ 1,  8, 27])
    
    ##取值,注意的是它是以0为开始坐标,不matlab不同
    >>> a1[1]
    2
    
    ##定义多维数组
    >>> a3=np.array([[1,2,3],[4,5,6]])
    >>> a3
    array([[1, 2, 3],
           [4, 5, 6]])
    >>> a3[0]             #取出第一行的数据
    array([1, 2, 3])
    >>> a3[0,0]           #第一行第一个数据
    1
    >>> a3[0][0]          #也可用这种方式
    1
    >>> a3
    array([[1, 2, 3],
           [4, 5, 6]])
    >>> a3.sum(axis=0)     #按行相加,列不变
    array([5, 7, 9])
    >>> a3.sum(axis=1)     #按列相加,行不变
    array([ 6, 15])

    矩阵的数学运算

    关于方阵

    >>> m = np.array([[1,2,3], [2,2,3], [2,3,4]])   #定义一个方阵
    >>> m
    array([[1, 2, 3],
           [2, 2, 3],
           [2, 3, 4]])
    >>> print(np.linalg.det(m))       #求行列式
    1.0
    >>> print(np.linalg.inv(m))       #求逆
    [[-1.  1.  0.]
     [-2. -2.  3.]
     [ 2.  1. -2.]]
    >>> print(np.linalg.eig(m))      #特征值  特征向量
    (array([ 7.66898014+0.j        , -0.33449007+0.13605817j,
           -0.33449007-0.13605817j]), array([[-0.47474371+0.j        , -0.35654645+0.23768904j,
            -0.35654645-0.23768904j],
           [-0.53664812+0.j        ,  0.80607696+0.j        ,
             0.80607696-0.j        ],
    [-0.6975867 +0.j        , -0.38956192-0.12190158j,
            -0.38956192+0.12190158j]]))
    >>> y = np.array([1,2,3])
    >>> print(np.linalg.solve(m, y))   #解方程组
    [ 1.  3. -2.]

    矩阵乘法

    矩阵乘:按照线性代数的乘法

    >>> a = np.array([[1,2,3], [2,3,4]])
    >>> b = np.array([[1,2], [3,4], [5,6]])
    >>> a
    array([[1, 2, 3],
           [2, 3, 4]])
    >>> b
    array([[1, 2],
           [3, 4],
           [5, 6]])
    >>> np.dot(a, b)      #方法一
    array([[22, 28],
           [31, 40]])
    >>> np.matmul(a,b)    #方法二
    array([[22, 28],

    注:一维数组之间运算时,dot()表示的是内积。

    点乘:对应位置相乘

    >>> a = np.array([[1,2],[3,4]])
    >>> b = np.array([[1,1],[2,2]])
    >>> a
    array([[1, 2],
           [3, 4]])
    >>> b
    array([[1, 1],
           [2, 2]])
    >>> a * b                   #方法一
    array([[1, 2],
           [6, 8]])
    >>> np.multiply(a, b)   #方法二
    array([[1, 2],
           [6, 8]])

    参考链接:

    1、https://blog.csdn.net/chenhjie/article/details/73385353

    2、https://blog.csdn.net/taoyanqi8932/article/details/52703686

    3、https://blog.csdn.net/cqk0100/article/details/76221749

    4、dot的使用 https://blog.csdn.net/u012149181/article/details/78913416

  • 相关阅读:
    【硬件】PCB设计步骤
    【modbus】modbus协议入门讲解
    【I2C】上拉电阻的选择
    【运放】失调电压、偏置电流
    【硬件】模拟地和数字地的隔离
    【电力】电流互感器和电压互感器
    【电力】为什么高电压传输时线路损耗小
    【办公】pdf转ppt的方法
    【EMC】电压暂降、短时中断和电压变化
    js 下的 split
  • 原文地址:https://www.cnblogs.com/lfri/p/10561001.html
Copyright © 2011-2022 走看看