zoukankan      html  css  js  c++  java
  • scikit-opt——Python中的群体智能优化算法库

    安装

    pip install scikit-opt

    对于当前的开发者版本:

    git clone git@github.com:guofei9987/scikit-opt.git
    cd scikit-opt
    pip install .

    Genetic Algorithm

    第一步:定义你的问题

    import numpy as np
    
    
    def schaffer(p):
        '''
        This function has plenty of local minimum, with strong shocks
        global minimum at (0,0) with value 0
        '''
        x1, x2 = p
        x = np.square(x1) + np.square(x2)
        return 0.5 + (np.sin(x) - 0.5) / np.square(1 + 0.001 * x)

    第二步:运行遗传算法

    from sko.GA import GA
    
    #2个变量,每代取50个,800次迭代,上下界及精度 ga
    = GA(func=schaffer, n_dim=2, size_pop=50, max_iter=800, lb=[-1, -1], ub=[1, 1], precision=1e-7) best_x, best_y = ga.run() print('best_x:', best_x, ' ', 'best_y:', best_y)

    第三步:画出结果

    import pandas as pd
    import matplotlib.pyplot as plt
    
    Y_history = pd.DataFrame(ga.all_history_Y)
    fig, ax = plt.subplots(2, 1)
    ax[0].plot(Y_history.index, Y_history.values, '.', color='red')
    Y_history.min(axis=1).cummin().plot(kind='line')
    plt.show()

    精度改成1就能视为整数规划。

    Genetic Algorithm for TSP(Travelling Salesman Problem)

    只需要导入GA_TSP,它重载了crossover, mutation来解决TSP.

    第一步:定义你的问题。准备你的点的坐标和距离矩阵。

    这里使用随机数据作为Demo.

    import numpy as np
    from scipy import spatial
    import matplotlib.pyplot as plt
    
    num_points = 50
    
    points_coordinate = np.random.rand(num_points, 2)  # generate coordinate of points
    distance_matrix = spatial.distance.cdist(points_coordinate, points_coordinate, metric='euclidean')
    
    
    def cal_total_distance(routine):
        '''The objective function. input routine, return total distance.
        cal_total_distance(np.arange(num_points))
        '''
        num_points, = routine.shape
        return sum([distance_matrix[routine[i % num_points], routine[(i + 1) % num_points]] for i in range(num_points)])

    第二步:运行GA算法

    from sko.GA import GA_TSP
    
    ga_tsp = GA_TSP(func=cal_total_distance, n_dim=num_points, size_pop=50, max_iter=500, prob_mut=1)
    best_points, best_distance = ga_tsp.run()

    第三步:画出结果

    fig, ax = plt.subplots(1, 2)
    best_points_ = np.concatenate([best_points, [best_points[0]]])
    best_points_coordinate = points_coordinate[best_points_, :]
    ax[0].plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], 'o-r')
    ax[1].plot(ga_tsp.generation_best_Y)
    plt.show()

    参考链接:scikit-opt官方文档-遗传算法部分

  • 相关阅读:
    Activity跳转动画
    如何查询自己的手机版本?欧版、亚太、港行、还是国行?
    VC程序员常用工具汇总
    陈灯可重用代码段管理器VS插件版5.0发布(代码段收集器、个人代码库、代码片段管理、代码管理)
    基于OSLC的系统集成
    安桌点菜源代码
    eclipse jsp 文字设置
    ubuntu 下 netbeans平台 使用C连接mysql
    使用gdi+实时绘制picturebox(画个叉)
    思路上的转变,运用投影和一阶导数的思想
  • 原文地址:https://www.cnblogs.com/lfri/p/12241206.html
Copyright © 2011-2022 走看看