zoukankan      html  css  js  c++  java
  • hdoj_4251The Famous ICPC Team Again

    The Famous ICPC Team Again

    Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 645    Accepted Submission(s): 307


    Problem Description
    When Mr. B, Mr. G and Mr. M were preparing for the 2012 ACM-ICPC World Final Contest, Mr. B had collected a large set of contest problems for their daily training. When they decided to take training, Mr. B would choose one of them from the problem set. All the problems in the problem set had been sorted by their time of publish. Each time Prof. S, their coach, would tell them to choose one problem published within a particular time interval. That is to say, if problems had been sorted in a line, each time they would choose one of them from a specified segment of the line.

    Moreover, when collecting the problems, Mr. B had also known an estimation of each problem’s difficultness. When he was asked to choose a problem, if he chose the easiest one, Mr. G would complain that “Hey, what a trivial problem!”; if he chose the hardest one, Mr. M would grumble that it took too much time to finish it. To address this dilemma, Mr. B decided to take the one with the medium difficulty. Therefore, he needed a way to know the median number in the given interval of the sequence.
     

    Input
    For each test case, the first line contains a single integer n (1 <= n <= 100,000) indicating the total number of problems. The second line contains n integers xi (0 <= xi <= 1,000,000,000), separated by single space, denoting the difficultness of each problem, already sorted by publish time. The next line contains a single integer m (1 <= m <= 100,000), specifying number of queries. Then m lines follow, each line contains a pair of integers, A and B (1 <= A <= B <= n), denoting that Mr. B needed to choose a problem between positions A and B (inclusively, positions are counted from 1). It is guaranteed that the number of items between A and B is odd.
     

    Output
    For each query, output a single line containing an integer that denotes the difficultness of the problem that Mr. B should choose.
     

    Sample Input
    5 5 3 2 4 1 3 1 3 2 4 3 5 5 10 6 4 8 2 3 1 3 2 4 3 5
     

    Sample Output
    Case 1: 3 3 2 Case 2: 6 6 4
    //求给定区间[x,y]的中位数,也就是[x,y]区间的第(y - x) / 2 + 1大值。
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    #pragma warning(disable : 4996)
    const int MAXN = 100010;
    #define mid ((l + r) >> 1)
    int t[20][MAXN],sum[20][MAXN];
    int as[MAXN];
    //以下为查找区间第k小划分树
    void build(int p,int l,int r)
    {
    	int lm = 0, i, ls = l, rs = mid + 1;//lm表示应被放入左子树且与中位数相等的数有多少个,ls为左子树的起始位置,rs为右子树的起始位置
    	for(i = mid; i >= l; i--) //求lm
    	{
    		if(as[i] == as[mid])
    		{
    			lm++;
    		}
    		else
    		{
    			break;
    		}
    	}
    	for(i = l; i <= r; i++)
    	{
    		if(i == l)//这里要特殊讨论
    		{
    			sum[p][i] = 0;
    		}
    		else
    		{
    			sum[p][i] = sum[p][i-1];
    		}
    		if(t[p][i] == as[mid])//若与中位数相等则判断是否应该被放入左子树
    		{
    			if(lm != 0)
    			{
    				lm--;
    				sum[p][i]++;
    				t[p+1][ls++] = t[p][i];
    			}
    			else
    			{
    				t[p+1][rs++] = t[p][i];
    			}
    		}
    		else if(t[p][i] < as[mid])//查找区间第K大即为>
    		{
    			sum[p][i]++;
    			t[p+1][ls++]=t[p][i];
    		}
    		else
    		{
    			t[p+1][rs++] = t[p][i];
    		}
    	}
    	if(l==r)
    	{
    		return;
    	}
    	build(p + 1, l, mid);
    	build(p + 1, mid + 1, r);
    }
    int query(int p, int l, int r, int ql, int qr, int k)
    {
    	int s, ss;//s表示l到ql-1的区间内放入左子树的个数,ss表示区间[ql,qr]被放入左子树的个数
    	if(l == r)//找到所求的数
    	{
    		return t[p][l];
    	}
    	if(ql == l)
    	{
    		s = 0, ss = sum[p][qr];
    	}
    	else
    	{
    		s = sum[p][ql-1], ss = sum[p][qr] - s;
    	}
    	if(k<=ss)//要找的数在左子树中
    	{
    		return query(p + 1, l, mid, l + s, l + sum[p][qr] - 1, k);
    	}
    	else//要找的数在右子树中
    	{
    		return query(p + 1, mid + 1, r, mid + 1 - l + ql - s, mid + 1 - l + qr - sum[p][qr], k - ss);
    	}
    }
    
    int main()
    {
    	freopen("in.txt", "r", stdin);
    	int n, m, x, y, z;
    	int count = 1;
    	while(scanf("%d", &n) != EOF)
    	{
    		printf("Case %d:\n", count++);
    		for (int i = 1; i <= n; i++)
    		{
    			scanf("%d", &as[i]);
    			t[0][i] = as[i];
    		}
    		sort(as + 1, as + n + 1);
    		build(0, 1, n);
    		scanf("%d", &m);
    		while (m--)
    		{
    			scanf("%d %d", &x, &y);
    			z = (y - x) / 2 + 1;
    			printf("%d\n", query(0, 1, n, x, y, z));
    		}
    	}
    	return 0;
    }


  • 相关阅读:
    新版ubuntu中打开终端的方法和安装ssh 的方法
    HTML中利用404将老域名重定向到新域名
    KeelKit 1.0.3500.25185
    如何制作VSPackage的安装程序
    一副漫画:IE6滚回你老家去
    “表单控件”与“实体类”
    VS2005中得到 Web页面 或 窗体的 IDesignerHost
    一句SQL搞定分页
    CodeDom Assistant CodeDom的强大工具, 有些BUG修正了下,发到CodePlex,大家有需要的可以看看
    VS2005 出现 The OutputPath property is not set for this project. 错误的解决方法
  • 原文地址:https://www.cnblogs.com/lgh1992314/p/5835013.html
Copyright © 2011-2022 走看看