zoukankan      html  css  js  c++  java
  • zoj_2136Longest Ordered Subsequence

    Longest Ordered Subsequence

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, the sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e.g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences of this sequence are of length 4, e.g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.


    Input

    The first line of input contains the length of sequence N (1 <= N <= 1000). The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces.


    Output

    Output must contain a single integer - the length of the longest ordered subsequence of the given sequence.


    This problem contains multiple test cases!

    The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

    The output format consists of N output blocks. There is a blank line between output blocks.


    Sample Input

    1

    7
    1 7 3 5 9 4 8


    Sample Output

    4


    最长上升子序列。。。


    #include <iostream>
    #include <cstring>
    #include <algorithm>
    using namespace  std;
    const int MAXN = 1005;
    int main()
    {
    	freopen("in.txt","r",stdin);
    	int t, n, i, j;
    	int arr[MAXN] = {0};
    	int dp[MAXN] = {0};
    	cin >> t;
    	while(t--)
    	{
    		memset(arr,0,sizeof(arr));
    		memset(dp,0,sizeof(dp));
    		cin >> n;
    		for(i = 1; i <= n; i++)
    		{
    			cin>>arr[i];
    		}
    		for(i = 1; i <= n; i++)
    			dp[i] = 1;
    		for(i = 2; i <= n; i++)
    		{
    			for(j = 1; j < i; j++)
    			{
    				if(arr[j] < arr[i] && dp[j] >= dp[i])
    					dp[i] = dp[j] + 1;
    			}
    		}
    		int ans = -1;
    		for(i = 1; i <= n; i++)
    			ans = max(ans, dp[i]);
    		cout << ans << endl;
    		if(t != 0)
    			cout<<endl;
    	}
    }








  • 相关阅读:
    【转载】常考算法模板
    NOIP2020微信步数暴力80分
    NOIP2020移球游戏快速排序满分程序
    第一场NOI Online能力测试入门组B跑步
    【转】STL之Set——插入元素、二分查找元素(log级别)
    [转载]图论500题
    差分约束系统简单介绍(入门)
    辗转相除法的证明
    并查集2个优化——按秩合并和路径压缩
    递推算法之平面分割问题总结
  • 原文地址:https://www.cnblogs.com/lgh1992314/p/5835268.html
Copyright © 2011-2022 走看看