zoukankan      html  css  js  c++  java
  • 九度OJ 1144:Freckles(斑点) (最小生成树)

    时间限制:1 秒

    内存限制:32 兆

    特殊判题:

    提交:1538

    解决:760

    题目描述:

        In an episode of the Dick Van Dyke show, little Richie connects the freckles on his Dad's back to form a picture of the Liberty Bell. Alas, one of the freckles turns out to be a scar, so his Ripley's engagement falls through. 
        Consider Dick's back to be a plane with freckles at various (x,y) locations. Your job is to tell Richie how to connect the dots so as to minimize the amount of ink used. Richie connects the dots by drawing straight lines between pairs, possibly lifting the pen between lines. When Richie is done there must be a sequence of connected lines from any freckle to any other freckle. 

    输入:

        The first line contains 0 < n <= 100, the number of freckles on Dick's back. For each freckle, a line follows; each following line contains two real numbers indicating the (x,y) coordinates of the freckle.

    输出:

        Your program prints a single real number to two decimal places: the minimum total length of ink lines that can connect all the freckles.

    样例输入:
    3
    1.0 1.0
    2.0 2.0
    2.0 4.0
    样例输出:
    3.41
    来源:
    2009年北京大学计算机研究生机试真题

    思路:

    求最小生成树,其中的总路径长度即答案。


    代码:

    #include <stdio.h>
    #include <stdlib.h>
    #include <math.h>
     
    #define N 100
    #define M (N*(N-1)/2)
         
    typedef struct point {
        double x;
        double y;
    } POINT;
         
    typedef struct node {
        int x;
        int y;
        double d;
    } ROAD; 
                 
    int n;      
    int pre[N+1];
    int count[N+1];
    int num;
             
    void init() 
    {           
        for (int i=1; i<=n; i++)
        {   
            pre[i] = i;
            count[i] = 1;
        }
        num = n;
    }       
     
    int find(int i)
    {           
        while (i != pre[i])
            i = pre[i]; 
        return i; 
    }       
     
    int combine(int i, int j)
    {           
        int a = find(i);
        int b = find(j);
        if (a != b)
        {
            if (count[a] > count[b])
            {
                pre[b] = a;
                count[a] += count[b];
                count[b] = 0;
            }
            else
            {
                pre[a] = b;
                count[b] += count[a];
                count[a] = 0;
            }
            num --;
            return 1;
        }
        else
            return 0;
    }
     
    int cmp(const void *a, const void *b)
    {
        ROAD *x = (ROAD *)a;
        ROAD *y = (ROAD *)b;
        return (x->d > y->d) ? 1 : -1;
    }
     
    int main(void)
    {
        int m, i, j;
        POINT p[N+1];
        ROAD r[M];
        double sum;
     
        while (scanf("%d", &n) != EOF && n)
        {
            for (i=1; i<=n; i++)
                scanf("%lf%lf", &p[i].x, &p[i].y);
     
            m = 0;
            for (i=1; i<=n; i++)
            {
                for (j=i+1; j<=n; j++)
                {
                    r[m].x = i;
                    r[m].y = j;
                    r[m].d = sqrt( (p[i].x-p[j].x)*(p[i].x-p[j].x)
                                + (p[i].y-p[j].y)*(p[i].y-p[j].y) );
                    m ++;
                }
            }   
            qsort(r, m, sizeof(r[0]), cmp);
            //for (i=0; i<m; i++)
            //  printf("%d %d %.2lf
    ", r[i].x, r[i].y, r[i].d);
             
            init();
            sum = 0;
            for(i=0; i<m; i++)
            {   
                if(combine(r[i].x, r[i].y))
                    sum += r[i].d;
                if (num == 1)
                    break;
            }   
         
            printf("%.2lf
    ", sum);
        }
     
        return 0;
    }
    /**************************************************************
        Problem: 1144
        User: liangrx06
        Language: C
        Result: Accepted
        Time:10 ms
        Memory:932 kb
    ****************************************************************/


    编程算法爱好者。
  • 相关阅读:
    Knowledge point
    Nagios详解(基础、安装、配置文件解析及监控实例)
    配置网络yum源
    springsecurity整合springboot实现简单认证授权
    使用openssl生成rsa密钥对
    springsecurity实现记住我功能
    springsecurity生成图形验证码并校验
    springsecurity开发基于表单的认证--个性化用户认证流程
    springSecurity自定义用户认证逻辑
    关于JWT分析的文章转载
  • 原文地址:https://www.cnblogs.com/liangrx06/p/5083887.html
Copyright © 2011-2022 走看看